数据的高斯滤波代码实现
时间: 2023-08-09 22:11:46 浏览: 85
基于高斯滤波器的实现
4星 · 用户满意度95%
数据的高斯滤波可以使用各种编程语言实现,以下是一个 Python 代码示例:
```python
import numpy as np
from scipy.ndimage.filters import gaussian_filter1d
# 生成示例数据
x = np.linspace(0, 10, 100)
y = np.sin(x) + np.random.normal(0, 0.1, size=100)
# 进行高斯滤波
y_filtered = gaussian_filter1d(y, sigma=2)
# 绘制原始数据和滤波后的数据
import matplotlib.pyplot as plt
plt.plot(x, y, label="Original")
plt.plot(x, y_filtered, label="Filtered")
plt.legend()
plt.show()
```
在这个示例中,我们使用了 NumPy 和 SciPy 库中的函数来生成示例数据和进行高斯滤波。具体来说,我们首先生成了一个包含噪声的正弦曲线,然后使用 `gaussian_filter1d` 函数对其进行高斯滤波。该函数的第二个参数 `sigma` 指定了高斯函数的标准差,用于控制滤波的平滑程度。最后,我们使用 Matplotlib 库将原始数据和滤波后的数据绘制在同一个图像中,以便比较它们的差异。
阅读全文