#make predictions preds = [] for i in range(0,103): a = train['close'][len(train)-103+i:].sum() + sum(preds) b = a/103 NameError: name 'rms' is not defined preds.append(b) #calculate rmse import numpy as np preds = [1, 2, 3, 4, 5] preds_np = np.array(preds) sum_preds = preds_np.sum() preds_valid = [] for i in range(0, len(preds) - 102): a = preds[i:i+103].sum() b = a/103 preds_valid.append(b) rms=np.sqrt(np.mean(np.power((np.array(valid['close'])-preds),2))) rms
时间: 2024-02-25 11:55:25 浏览: 63
这段代码中存在两个问题:
1. 在第一部分代码中(make predictions),你使用了未定义的 `train` 变量。如果你需要使用 `train` 变量,需要先定义它。
2. 在第二部分代码中(calculate rmse),你使用了未定义的 `valid` 变量。如果你需要使用 `valid` 变量,需要先定义它。
此外,你还需要将 `rms` 变量的定义放在代码的前面,否则在计算 RMSE 时会报错。
以下是修改后的代码示例:
```python
import numpy as np
# define 'train' and 'valid' variables first
# make predictions
preds = []
for i in range(0,103):
a = train['close'][len(train)-103+i:].sum() + sum(preds)
b = a/103
preds.append(b)
# calculate RMSE
valid = [...] # define 'valid' variable first
preds_np = np.array(preds)
sum_preds = preds_np.sum()
preds_valid = []
for i in range(0, len(preds) - 102):
a = preds[i:i+103].sum()
b = a/103
preds_valid.append(b)
rms = np.sqrt(np.mean(np.power((np.array(valid['close'])-preds_valid),2)))
```
这样就可以避免上述错误了。
阅读全文