生成一段Mobielnetv3网络分类高光谱图像的代码
时间: 2023-08-15 08:04:50 浏览: 87
下面是一个基于PyTorch实现的MobileNetV3网络分类高光谱图像的代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class MobileNetV3(nn.Module):
def __init__(self, n_classes=10, input_channels=128):
super(MobileNetV3, self).__init__()
self.n_classes = n_classes
self.input_channels = input_channels
self.conv1 = nn.Conv2d(input_channels, 16, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(16)
self.hs1 = nn.Hardswish(inplace=True)
self.bottlenecks = nn.Sequential(
Bottleneck(16, 16, 16, nn.Hardswish(inplace=True), 1),
Bottleneck(16, 72, 24, nn.Hardswish(inplace=True), 2),
Bottleneck(24, 88, 24, nn.Hardswish(inplace=True), 1),
Bottleneck(24, 96, 40, nn.Hardswish(inplace=True), 2),
Bottleneck(40, 240, 40, nn.Hardswish(inplace=True), 1),
Bottleneck(40, 240, 40, nn.Hardswish(inplace=True), 1),
Bottleneck(40, 120, 48, nn.Hardswish(inplace=True), 1),
Bottleneck(48, 144, 48, nn.Hardswish(inplace=True), 1),
Bottleneck(48, 288, 96, nn.Hardswish(inplace=True), 2),
Bottleneck(96, 576, 96, nn.Hardswish(inplace=True), 1),
Bottleneck(96, 576, 96, nn.Hardswish(inplace=True), 1)
)
self.conv2 = nn.Conv2d(96, 576, kernel_size=1, stride=1, padding=0, bias=False)
self.bn2 = nn.BatchNorm2d(576)
self.hs2 = nn.Hardswish(inplace=True)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.classifier = nn.Sequential(
nn.Linear(576, 1280, bias=True),
nn.Hardswish(inplace=True),
nn.Dropout(p=0.2, inplace=True),
nn.Linear(1280, n_classes, bias=True)
)
self._initialize_weights()
def forward(self, x):
x = self.hs1(self.bn1(self.conv1(x)))
x = self.bottlenecks(x)
x = self.hs2(self.bn2(self.conv2(x)))
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.BatchNorm2d):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.zeros_(m.bias)
class Bottleneck(nn.Module):
def __init__(self, in_channels, out_channels, exp_channels, activation=nn.ReLU(inplace=True), stride=1):
super(Bottleneck, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.exp_channels = exp_channels
self.activation = activation
self.stride = stride
self.conv1 = nn.Conv2d(in_channels, exp_channels, kernel_size=1, stride=1, padding=0, bias=False)
self.bn1 = nn.BatchNorm2d(exp_channels)
self.hs1 = nn.Hardswish(inplace=True)
self.depthwise_conv = nn.Conv2d(exp_channels, exp_channels, kernel_size=3, stride=stride, padding=1, groups=exp_channels, bias=False)
self.bn2 = nn.BatchNorm2d(exp_channels)
self.hs2 = nn.Hardswish(inplace=True)
self.conv2 = nn.Conv2d(exp_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False)
self.bn3 = nn.BatchNorm2d(out_channels)
self.shortcut = nn.Sequential()
if stride == 1 and in_channels != out_channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(out_channels)
)
def forward(self, x):
out = self.hs1(self.bn1(self.conv1(x)))
out = self.hs2(self.bn2(self.depthwise_conv(out)))
out = self.bn3(self.conv2(out))
out = out + self.shortcut(x)
out = self.activation(out)
return out
```
这个网络定义了一个MobileNetV3分类器,输入尺寸为$128\times 128$,输入通道数为128,输出分类数为10。其中,bottlenecks是MobileNetV3的核心组件,由多个Bottleneck块组成。每个Bottleneck块由两个卷积层和一个shortcut组成,其中卷积层采用深度可分离卷积,shortcut可以是一个恒等映射或者一个卷积层。最后通过全局平均池化和一个全连接层得到分类结果。
阅读全文