mindspore框架下搭建vgg模型实现afhq图像数据集分类以及预测 Python实现代码

时间: 2024-03-21 19:44:39 浏览: 155
下面是MindSpore框架下搭建VGG模型实现AFHQ图像数据集分类以及预测的Python实现代码: 1. 安装MindSpore 在命令行输入以下命令进行安装: ``` pip install mindspore ``` 2. 导入相关库和数据集 ```python import os import mindspore.dataset as ds import mindspore.dataset.transforms.c_transforms as C import mindspore.dataset.vision.c_transforms as CV from mindspore import nn, Model, context from mindspore.train.callback import LossMonitor from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.common.initializer import TruncatedNormal data_dir = 'afhq/train' batch_size = 32 ``` 3. 数据集处理 ```python train_data = ds.ImageFolderDatasetV2(data_dir, num_parallel_workers=8, shuffle=True) train_data = train_data.map(input_columns="image", num_parallel_workers=8, operations=[ CV.Resize((224, 224)), CV.RandomCrop((224, 224)), CV.RandomHorizontalFlip(), CV.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), C.HWC2CHW() ]) train_data = train_data.batch(batch_size, drop_remainder=True) ``` 4. 定义VGG模型 ```python class VGG16(nn.Cell): def __init__(self, num_classes=3): super(VGG16, self).__init__() self.conv1_1 = nn.Conv2d(3, 64, kernel_size=3, padding=1) self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, padding=1) self.maxpool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2_1 = nn.Conv2d(64, 128, kernel_size=3, padding=1) self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, padding=1) self.maxpool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv3_1 = nn.Conv2d(128, 256, kernel_size=3, padding=1) self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, padding=1) self.conv3_3 = nn.Conv2d(256, 256, kernel_size=3, padding=1) self.maxpool3 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv4_1 = nn.Conv2d(256, 512, kernel_size=3, padding=1) self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.conv4_3 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.maxpool4 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv5_1 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.conv5_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.conv5_3 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.maxpool5 = nn.MaxPool2d(kernel_size=2, stride=2) self.fc1 = nn.Dense(25088, 4096, weight_init=TruncatedNormal(std=0.02)) self.fc2 = nn.Dense(4096, 4096, weight_init=TruncatedNormal(std=0.02)) self.fc3 = nn.Dense(4096, num_classes, weight_init=TruncatedNormal(std=0.02)) self.relu = nn.ReLU() self.flatten = nn.Flatten() def construct(self, x): x = self.relu(self.conv1_1(x)) x = self.relu(self.conv1_2(x)) x = self.maxpool1(x) x = self.relu(self.conv2_1(x)) x = self.relu(self.conv2_2(x)) x = self.maxpool2(x) x = self.relu(self.conv3_1(x)) x = self.relu(self.conv3_2(x)) x = self.relu(self.conv3_3(x)) x = self.maxpool3(x) x = self.relu(self.conv4_1(x)) x = self.relu(self.conv4_2(x)) x = self.relu(self.conv4_3(x)) x = self.maxpool4(x) x = self.relu(self.conv5_1(x)) x = self.relu(self.conv5_2(x)) x = self.relu(self.conv5_3(x)) x = self.maxpool5(x) x = self.flatten(x) x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.fc3(x) return x ``` 5. 训练模型 ```python context.set_context(mode=context.GRAPH_MODE, device_target="GPU") net = VGG16() loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True) opt = nn.Momentum(net.trainable_params(), learning_rate=0.01, momentum=0.9) model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'}) model.train(10, train_data, callbacks=[LossMonitor()], dataset_sink_mode=True) ``` 6. 加载模型并进行预测 ```python test_data_dir = 'afhq/val' test_data = ds.ImageFolderDatasetV2(test_data_dir, num_parallel_workers=8, shuffle=False) test_data = test_data.map(input_columns="image", num_parallel_workers=8, operations=[ CV.Resize((224, 224)), CV.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), C.HWC2CHW() ]) test_data = test_data.batch(batch_size, drop_remainder=True) model = Model(net) param_dict = load_checkpoint("vgg.ckpt") load_param_into_net(net, param_dict) predictions = [] for data in test_data.create_dict_iterator(): prediction = model.predict(data['image']) predictions.extend(prediction.asnumpy()) print(predictions) ```
阅读全文

相关推荐

最新推荐

recommend-type

Python通过VGG16模型实现图像风格转换操作详解

**Python通过VGG16模型实现图像风格转换详解** 图像风格转换是一种计算机视觉技术,它允许我们把一张图片(称为内容图像)的风格应用到另一张图片(称为目标风格图像)上,从而创造出一张融合了两者特点的新图像。...
recommend-type

keras实现VGG16 CIFAR10数据集方式

在本文中,我们将深入探讨如何使用Keras库在CIFAR10数据集上实现VGG16模型。CIFAR10是一个广泛使用的图像识别数据集,包含10个类别的60,000张32x32像素的小型彩色图像。VGG16是一种深度卷积神经网络(CNN),在...
recommend-type

使用tensorflow实现VGG网络,训练mnist数据集方式

总的来说,使用TensorFlow实现VGG网络并训练MNIST数据集是一个典型的深度学习任务,涉及到模型架构的理解、数据处理技巧以及训练策略的选择。通过这个过程,可以深入理解深度学习模型的工作原理,同时提升在实际项目...
recommend-type

pytorch VGG11识别cifar10数据集(训练+预测单张输入图片操作)

通过以上步骤,我们可以用PyTorch实现VGG11模型在CIFAR-10数据集上的训练和单张图片预测,从而掌握深度学习中的图像分类技术。这种深度学习模型的应用广泛,不仅可以用于CIFAR-10,还可以扩展到其他图像分类任务,...
recommend-type

keras实现VGG16方式(预测一张图片)

在本文中,我们将深入探讨如何使用Keras库实现VGG16模型来预测一张图片的类别。VGG16是一种深度卷积神经网络(CNN),由牛津大学的Visual Geometry Group(VGG)提出,因其16层的深度而得名。这个模型在ImageNet数据...
recommend-type

macOS 10.9至10.13版高通RTL88xx USB驱动下载

资源摘要信息:"USB_RTL88xx_macOS_10.9_10.13_driver.zip是一个为macOS系统版本10.9至10.13提供的高通USB设备驱动压缩包。这个驱动文件是针对特定的高通RTL88xx系列USB无线网卡和相关设备的,使其能够在苹果的macOS操作系统上正常工作。通过这个驱动,用户可以充分利用他们的RTL88xx系列设备,包括但不限于USB无线网卡、USB蓝牙设备等,从而实现在macOS系统上的无线网络连接、数据传输和其他相关功能。 高通RTL88xx系列是广泛应用于个人电脑、笔记本、平板和手机等设备的无线通信组件,支持IEEE 802.11 a/b/g/n/ac等多种无线网络标准,为用户提供了高速稳定的无线网络连接。然而,为了在不同的操作系统上发挥其性能,通常需要安装相应的驱动程序。特别是在macOS系统上,由于操作系统的特殊性,不同版本的系统对硬件的支持和驱动的兼容性都有不同的要求。 这个压缩包中的驱动文件是特别为macOS 10.9至10.13版本设计的。这意味着如果你正在使用的macOS版本在这个范围内,你可以下载并解压这个压缩包,然后按照说明安装驱动程序。安装过程通常涉及运行一个安装脚本或应用程序,或者可能需要手动复制特定文件到系统目录中。 请注意,在安装任何第三方驱动程序之前,应确保从可信赖的来源获取。安装非官方或未经认证的驱动程序可能会导致系统不稳定、安全风险,甚至可能违反操作系统的使用条款。此外,在安装前还应该查看是否有适用于你设备的更新驱动版本,并考虑备份系统或创建恢复点,以防安装过程中出现问题。 在标签"凄 凄 切 切 群"中,由于它们似乎是无意义的汉字组合,并没有提供有关该驱动程序的具体信息。如果这是一组随机的汉字,那可能是压缩包文件名的一部分,或者可能是文件在上传或处理过程中产生的错误。因此,这些标签本身并不提供与驱动程序相关的任何技术性知识点。 总结来说,USB_RTL88xx_macOS_10.9_10.13_driver.zip包含了用于特定高通RTL88xx系列USB设备的驱动,适用于macOS 10.9至10.13版本的操作系统。在安装驱动之前,应确保来源的可靠性,并做好必要的系统备份,以防止潜在的系统问题。"
recommend-type

PyCharm开发者必备:提升效率的Python环境管理秘籍

# 摘要 本文系统地介绍了PyCharm集成开发环境的搭建、配置及高级使用技巧,重点探讨了如何通过PyCharm进行高效的项目管理和团队协作。文章详细阐述了PyCharm项目结构的优化方法,包括虚拟环境的有效利用和项目依赖的管理。同时,本文也深入分析了版本控制的集成流程,如Git和GitHub的集成,分支管理和代码合并策略。为了提高代码质量,本文提供了配置和使用linters以及代码风格和格式化工具的指导。此外,本文还探讨了PyCharm的调试与性能分析工具,插件生态系统,以及定制化开发环境的技巧。在团队协作方面,本文讲述了如何在PyCharm中实现持续集成和部署(CI/CD)、代码审查,以及
recommend-type

matlab中VBA指令集

MATLAB是一种强大的数值计算和图形处理软件,主要用于科学计算、工程分析和技术应用。虽然它本身并不是基于Visual Basic (VB)的,但在MATLAB环境中可以利用一种称为“工具箱”(Toolbox)的功能,其中包括了名为“Visual Basic for Applications”(VBA)的接口,允许用户通过编写VB代码扩展MATLAB的功能。 MATLAB的VBA指令集实际上主要是用于操作MATLAB的工作空间(Workspace)、图形界面(GUIs)以及调用MATLAB函数。VBA代码可以在MATLAB环境下运行,执行的任务可能包括但不限于: 1. 创建和修改变量、矩阵
recommend-type

在Windows Forms和WPF中实现FontAwesome-4.7.0图形

资源摘要信息: "将FontAwesome470应用于Windows Forms和WPF" 知识点: 1. FontAwesome简介: FontAwesome是一个广泛使用的图标字体库,它提供了一套可定制的图标集合,这些图标可以用于Web、桌面和移动应用的界面设计。FontAwesome 4.7.0是该库的一个版本,它包含了大量常用的图标,用户可以通过简单的CSS类名引用这些图标,而无需下载单独的图标文件。 2. .NET开发中的图形处理: 在.NET开发中,图形处理是一个重要的方面,它涉及到创建、修改、显示和保存图像。Windows Forms和WPF(Windows Presentation Foundation)是两种常见的用于构建.NET桌面应用程序的用户界面框架。Windows Forms相对较为传统,而WPF提供了更为现代和丰富的用户界面设计能力。 3. 将FontAwesome集成到Windows Forms中: 要在Windows Forms应用程序中使用FontAwesome图标,首先需要将FontAwesome字体文件(通常是.ttf或.otf格式)添加到项目资源中。然后,可以通过设置控件的字体属性来使用FontAwesome图标,例如,将按钮的字体设置为FontAwesome,并通过设置其Text属性为相应的FontAwesome类名(如"fa fa-home")来显示图标。 4. 将FontAwesome集成到WPF中: 在WPF中集成FontAwesome稍微复杂一些,因为WPF对字体文件的支持有所不同。首先需要在项目中添加FontAwesome字体文件,然后通过XAML中的FontFamily属性引用它。WPF提供了一个名为"DrawingImage"的类,可以将图标转换为WPF可识别的ImageSource对象。具体操作是使用"FontIcon"控件,并将FontAwesome类名作为Text属性值来显示图标。 5. FontAwesome字体文件的安装和引用: 安装FontAwesome字体文件到项目中,通常需要先下载FontAwesome字体包,解压缩后会得到包含字体文件的FontAwesome-master文件夹。将这些字体文件添加到Windows Forms或WPF项目资源中,一般需要将字体文件复制到项目的相应目录,例如,对于Windows Forms,可能需要将字体文件放置在与主执行文件相同的目录下,或者将其添加为项目的嵌入资源。 6. 如何使用FontAwesome图标: 在使用FontAwesome图标时,需要注意图标名称的正确性。FontAwesome提供了一个图标检索工具,帮助开发者查找和确认每个图标的确切名称。每个图标都有一个对应的CSS类名,这个类名就是用来在应用程序中引用图标的。 7. 面向不同平台的应用开发: 由于FontAwesome最初是为Web开发设计的,将它集成到桌面应用中需要做一些额外的工作。在不同平台(如Web、Windows、Mac等)之间保持一致的用户体验,对于开发团队来说是一个重要考虑因素。 8. 版权和使用许可: 在使用FontAwesome字体图标时,需要遵守其提供的许可证协议。FontAwesome有多个许可证版本,包括免费的公共许可证和个人许可证。开发者在将FontAwesome集成到项目中时,应确保符合相关的许可要求。 9. 资源文件管理: 在管理包含FontAwesome字体文件的项目时,应当注意字体文件的维护和更新,确保在未来的项目版本中能够继续使用这些图标资源。 10. 其他图标字体库: FontAwesome并不是唯一一个图标字体库,还有其他类似的选择,例如Material Design Icons、Ionicons等。开发人员可以根据项目需求和偏好选择合适的图标库,并学习如何将它们集成到.NET桌面应用中。 以上知识点总结了如何将FontAwesome 4.7.0这一图标字体库应用于.NET开发中的Windows Forms和WPF应用程序,并涉及了相关的图形处理、资源管理和版权知识。通过这些步骤和细节,开发者可以更有效地增强其应用程序的视觉效果和用户体验。
recommend-type

【Postman进阶秘籍】:解锁高级API测试与管理的10大技巧

# 摘要 本文系统地介绍了Postman工具的基础使用方法和高级功能,旨在提高API测试的效率与质量。第一章概述了Postman的基本操作,为读者打下使用基础。第二章深入探讨了Postman的环境变量设置、集合管理以及自动化测试流程,特别强调了测试脚本的编写和持续集成的重要性。第三章介绍了数据驱动测试、高级断言技巧以及性能测试,这些都是提高测试覆盖率和测试准确性的关键技巧。第四章侧重于API的管理,包括版本控制、文档生成和分享,以及监控和报警系统的设计,这些是维护和监控API的关键实践。最后,第五章讨论了Postman如何与DevOps集成以及插件的使用和开发,展示了Postman在更广阔的应