卷积神经网络java代码实现手写输入
时间: 2023-10-14 19:06:35 浏览: 108
以下是一个简单的Java代码实现手写数字输入的卷积神经网络:
```java
import java.util.Random;
public class ConvNet {
private int inputSize;
private int filterSize;
private int numFilters;
private double[][][] filters;
private double[] biases;
private int hiddenSize;
private double[] hiddenLayer;
private double[][] hiddenWeights;
private double[] hiddenBiases;
private int outputSize;
private double[] outputLayer;
private double[][] outputWeights;
private double[] outputBiases;
public ConvNet(int inputSize, int filterSize, int numFilters, int hiddenSize, int outputSize) {
this.inputSize = inputSize;
this.filterSize = filterSize;
this.numFilters = numFilters;
this.filters = new double[numFilters][filterSize][filterSize];
this.biases = new double[numFilters];
this.hiddenSize = hiddenSize;
this.hiddenLayer = new double[hiddenSize];
this.hiddenWeights = new double[hiddenSize][numFilters * ((inputSize - filterSize + 1) / 2) * ((inputSize - filterSize + 1) / 2)];
this.hiddenBiases = new double[hiddenSize];
this.outputSize = outputSize;
this.outputLayer = new double[outputSize];
this.outputWeights = new double[outputSize][hiddenSize];
this.outputBiases = new double[outputSize];
Random rand = new Random();
// Initialize filters and biases
for (int i = 0; i < numFilters; i++) {
biases[i] = rand.nextDouble() * 2 - 1;
for (int j = 0; j < filterSize; j++) {
for (int k = 0; k < filterSize; k++) {
filters[i][j][k] = rand.nextDouble() * 2 - 1;
}
}
}
// Initialize hidden weights and biases
for (int i = 0; i < hiddenSize; i++) {
hiddenBiases[i] = rand.nextDouble() * 2 - 1;
for (int j = 0; j < numFilters * ((inputSize - filterSize + 1) / 2) * ((inputSize - filterSize + 1) / 2); j++) {
hiddenWeights[i][j] = rand.nextDouble() * 2 - 1;
}
}
// Initialize output weights and biases
for (int i = 0; i < outputSize; i++) {
outputBiases[i] = rand.nextDouble() * 2 - 1;
for (int j = 0; j < hiddenSize; j++) {
outputWeights[i][j] = rand.nextDouble() * 2 - 1;
}
}
}
public double[] forward(double[][] input) {
// Convolution layer
double[][][] convolved = new double[numFilters][inputSize - filterSize + 1][inputSize - filterSize + 1];
for (int filter = 0; filter < numFilters; filter++) {
for (int i = 0; i < inputSize - filterSize + 1; i += 2) {
for (int j = 0; j < inputSize - filterSize + 1; j += 2) {
double sum = 0;
for (int k = 0; k < filterSize; k++) {
for (int l = 0; l < filterSize; l++) {
sum += input[i + k][j + l] * filters[filter][k][l];
}
}
convolved[filter][i / 2][j / 2] = sum + biases[filter];
}
}
}
// ReLU activation function
for (int filter = 0; filter < numFilters; filter++) {
for (int i = 0; i < inputSize - filterSize + 1; i += 2) {
for (int j = 0; j < inputSize - filterSize + 1; j += 2) {
convolved[filter][i / 2][j / 2] = Math.max(0, convolved[filter][i / 2][j / 2]);
}
}
}
// Flatten convolution output
double[] flattened = new double[numFilters * ((inputSize - filterSize + 1) / 2) * ((inputSize - filterSize + 1) / 2)];
int index = 0;
for (int filter = 0; filter < numFilters; filter++) {
for (int i = 0; i < (inputSize - filterSize + 1) / 2; i++) {
for (int j = 0; j < (inputSize - filterSize + 1) / 2; j++) {
flattened[index] = convolved[filter][i][j];
index++;
}
}
}
// Hidden layer
for (int i = 0; i < hiddenSize; i++) {
double sum = 0;
for (int j = 0; j < numFilters * ((inputSize - filterSize + 1) / 2) * ((inputSize - filterSize + 1) / 2); j++) {
sum += hiddenWeights[i][j] * flattened[j];
}
hiddenLayer[i] = Math.max(0, sum + hiddenBiases[i]);
}
// Output layer
for (int i = 0; i < outputSize; i++) {
double sum = 0;
for (int j = 0; j < hiddenSize; j++) {
sum += outputWeights[i][j] * hiddenLayer[j];
}
outputLayer[i] = sum + outputBiases[i];
}
// Softmax activation function
double[] softmax = new double[outputSize];
double sum = 0;
for (int i = 0; i < outputSize; i++) {
softmax[i] = Math.exp(outputLayer[i]);
sum += softmax[i];
}
for (int i = 0; i < outputSize; i++) {
softmax[i] /= sum;
}
return softmax;
}
}
```
这是一个简单的卷积神经网络,包含一个卷积层、一个ReLU激活函数、一个全连接层和一个Softmax激活函数。在`forward`方法中,输入是一个二维数组`input`,表示手写数字的像素值。首先进行卷积操作,然后通过ReLU激活函数,将输出扁平化为一维数组。然后将其输入到全连接层中,再通过ReLU激活函数得到隐藏层输出。最后将隐藏层输出输入到输出层中,通过Softmax激活函数得到最终的分类结果。
阅读全文