用python构建一个DNN模型(一个输入层具有12个节点、三个隐藏层每层10个节点和一个输出层具有8个节点,隐藏层都使用Leaky ReLU激活函数,然后进行归一化,权重和偏置值使用Xavier初始化进行初始化,在反向传播过程中使用Adam优化器更新DNN参数)
时间: 2024-02-27 18:55:15 浏览: 90
好的,下面是Python代码实现:
```python
import numpy as np
import tensorflow as tf
# 定义DNN模型
class DNN:
def __init__(self, input_shape=(None, 12), output_shape=(None, 8), hidden_units=[10, 10, 10]):
self.input_shape = input_shape
self.output_shape = output_shape
self.hidden_units = hidden_units
def build(self):
# 定义输入和输出占位符
self.inputs = tf.placeholder(tf.float32, shape=self.input_shape, name='inputs')
self.targets = tf.placeholder(tf.float32, shape=self.output_shape, name='targets')
# 定义隐藏层和输出层
prev_layer = self.inputs
for i, units in enumerate(self.hidden_units):
layer = tf.layers.dense(
prev_layer, units, activation=tf.nn.leaky_relu,
kernel_initializer=tf.contrib.layers.xavier_initializer(),
bias_initializer=tf.contrib.layers.xavier_initializer(),
name=f'hidden_{i}'
)
layer = tf.layers.batch_normalization(layer, training=True, name=f'bn_{i}')
prev_layer = layer
self.logits = tf.layers.dense(
prev_layer, self.output_shape[-1], activation=None,
kernel_initializer=tf.contrib.layers.xavier_initializer(),
bias_initializer=tf.contrib.layers.xavier_initializer(),
name='logits'
)
# 定义损失函数和优化器
self.loss = tf.reduce_mean(tf.square(self.targets - self.logits))
self.optimizer = tf.train.AdamOptimizer().minimize(self.loss)
```
以上就是一个简单的DNN模型的构建过程。
阅读全文