> #spearman > upper_ranks_x <- rank(c1)[rank(c1) >= length(c1) * 0.8] Error in if (xi == xj) 0L else if (xi > xj) 1L else -1L : argument is of length zero
时间: 2024-03-22 13:38:09 浏览: 37
这个错误可能是因为你的变量c1中没有足够的数据点来计算排名。请确保c1中至少有两个非缺失值数据点来进行排名计算。你可以使用以下代码来检查c1中的非缺失值数量:
```
sum(!is.na(c1))
```
如果结果小于2,则c1中没有足够的数据点进行排名计算,你需要添加更多的数据点才能计算Spearman相关系数。
相关问题
y <- as.numeric(exprSet2[,"ENSG00000049541"]) colnames <- colnames(exprSet2) cor_data_df <- data.frame(colnames) for (i in 1:length(colnames)){ test <- cor.test(as.numeric(exprSet2[,i]),y,type="spearman") cor_data_df[i,2] <- test$estimate cor_data_df[i,3] <- test$p.value cor_data_df[i,4] <- gene } names(cor_data_df) <- c("symbol","correlation","pvalue")这段代码什么意思
这段代码的主要作用是计算一个基因(ENSG00000049541)与数据集中所有其他基因的相关性。具体来说,它会将数据集中的每个基因与目标基因进行Spearman相关性分析,并将结果存储在一个数据框中。其中,第一列是数据集中其他基因的符号,第二列是相关性系数,第三列是p值,第四列是目标基因的符号。这个过程会对数据集中的每个基因重复进行,最终生成一个包含所有相关性分析结果的数据框。
逐行解释这段代码 column = list(average.columns) data = average.loc[:, column[0]:column[-3]] # 自变量 target = average.loc[:, ['TIMEsurvival', 'EVENTdeath']] for i in range(1, 101): X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.3, random_state=i) # feature = Spearman(X_train, 0.85) #spearman第一行 # feature = list(feature['feature']) #spearman第二行 # X_train = X_train.loc[:, feature] #spearman第三行 train_index = X_train.index train_column = X_train.columns zscore_scaler = preprocessing.StandardScaler() X_train = zscore_scaler.fit_transform(X_train) X_train = pd.DataFrame(X_train, index=train_index, columns=train_column) # X_test = X_test.loc[:, feature] #spearman第四行 test_index = X_test.index test_column = X_test.columns X_test = zscore_scaler.transform(X_test) X_test = pd.DataFrame(X_test, index=test_index, columns=test_column) train = pd.concat([X_train, y_train], axis=1)
这段代码主要是对数据进行预处理和分割,具体解释如下:
1. `column = list(average.columns)`:将 `average` 数据的列名转换成列表形式,并赋值给 `column`。
2. `data = average.loc[:, column[0]:column[-3]]`:从 `average` 数据中选取所有行和 `column[0]` 到 `column[-3]` 列的数据,赋值给 `data`。这里的 `column[-3]` 表示从最后一列开始往前数第三列。
3. `target = average.loc[:, ['TIMEsurvival', 'EVENTdeath']]`:从 `average` 数据中选取所有行和 `TIMEsurvival'` 以及 `'EVENTdeath'` 两列的数据,赋值给 `target`。这里的 `TIMEsurvival` 表示存活时间,`EVENTdeath` 表示是否死亡。
4. `for i in range(1, 101):`:循环 100 次,每次循环都进行一次数据分割和预处理的操作。
5. `X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.3, random_state=i)`:使用 `train_test_split` 方法将 `data` 和 `target` 数据集分别划分为训练集和测试集,其中测试集占 30%,`random_state=i` 表示每次随机划分的结果都是相同的,以保证实验结果可重复。
6. `train_index = X_train.index` 和 `train_column = X_train.columns`:将训练集中的行和列名分别赋值给 `train_index` 和 `train_column` 变量。
7. `zscore_scaler = preprocessing.StandardScaler()`:实例化 `StandardScaler` 类,即进行 Z-score 标准化的对象。
8. `X_train = zscore_scaler.fit_transform(X_train)`:对训练集进行 Z-score 标准化处理。
9. `X_train = pd.DataFrame(X_train, index=train_index, columns=train_column)`:将标准化后的训练集数据转换为 DataFrame 格式,并将行和列名分别设置为 `train_index` 和 `train_column`。
10. `test_index = X_test.index` 和 `test_column = X_test.columns`:将测试集中的行和列名分别赋值给 `test_index` 和 `test_column` 变量。
11. `X_test = zscore_scaler.transform(X_test)`:对测试集进行 Z-score 标准化处理。
12. `X_test = pd.DataFrame(X_test, index=test_index, columns=test_column)`:将标准化后的测试集数据转换为 DataFrame 格式,并将行和列名分别设置为 `test_index` 和 `test_column`。
13. `train = pd.concat([X_train, y_train], axis=1)`:将标准化后的训练集数据和目标变量 `y_train` 沿列方向合并,形成新的训练集 `train`。
阅读全文