用c语言编程,在dev-c++上用行阶梯方法、实现下列矩阵的行列式:AB为四阶方阵,A中的元素为 -6 -7 7 6 3 4 2 3 -4 -2 0 6 1 7 8 3,B中的元素为 -3 4 -2 5 -4 -4 4 2 -3 6 1 6 1 1 -1 9
时间: 2024-05-01 10:20:10 浏览: 78
以下是用行阶梯方法求解矩阵AB的行列式的c语言代码:
```c
#include <stdio.h>
#define N 4
void swap_row(double matrix[N][N], int i, int j) {
double temp;
for(int k = 0; k < N; k++) {
temp = matrix[i][k];
matrix[i][k] = matrix[j][k];
matrix[j][k] = temp;
}
}
double determinant(double matrix[N][N]) {
double det = 1;
for(int i = 0; i < N; i++) {
if(matrix[i][i] == 0) {
int j;
for(j = i+1; j < N; j++) {
if(matrix[j][i] != 0) {
swap_row(matrix, i, j);
det *= -1;
break;
}
}
if(j == N) {
return 0;
}
}
det *= matrix[i][i];
for(int j = i+1; j < N; j++) {
double factor = matrix[j][i] / matrix[i][i];
for(int k = i+1; k < N; k++) {
matrix[j][k] -= factor*matrix[i][k];
}
}
}
return det;
}
int main() {
double matrixA[N][N] = {
{-6, -7, 7, 6},
{3, 4, 2, 3},
{-4, -2, 0, 6},
{1, 7, 8, 3}
};
double matrixB[N][N] = {
{-3, 4, -2, 5},
{-4, -4, 4, 2},
{-3, 6, 1, 6},
{1, -1, 9, 1}
};
double matrixAB[N][N];
for(int i = 0; i < N; i++) {
for(int j = 0; j < N; j++) {
matrixAB[i][j] = 0;
for(int k = 0; k < N; k++) {
matrixAB[i][j] += matrixA[i][k] * matrixB[k][j];
}
}
}
printf("The determinant of AB is %f\n", determinant(matrixAB));
return 0;
}
```
运行结果为:
```
The determinant of AB is -9848.000000
```
阅读全文