BERT-BiLSTM-CRF 出图
时间: 2023-10-06 11:14:20 浏览: 146
基于BERT-BILSTM-CRF进行中文命名实体识别python源码.zip
5星 · 资源好评率100%
关于BERT-BiLSTM-CRF模型的图像表示,很遗憾,目前没有找到相关的图像。BERT-BiLSTM-CRF模型是一种结合了BERT预训练模型和BiLSTM-CRF模型的方法,用于中文命名实体识别任务。该模型首先通过BERT模型预处理生成基于上下文信息的词向量,然后将这些词向量输入到BiLSTM-CRF模型中进行进一步的训练和处理。然而,由于BERT-BiLSTM-CRF模型是基于文本的模型,没有明确的图像表示。因此,没有相关的图像来展示BERT-BiLSTM-CRF模型。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [BERT-BiLSTM-CRF-NER:NER任务的Tensorflow解决方案将BiLSTM-CRF模型与Google BERT微调和私有服务器服务结合...](https://download.csdn.net/download/weixin_42179184/18490050)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *2* [BERT-BILSTM-GCN-CRF-for-NER:在原本BERT-BILSTM-CRF上融合GCN和词性标签等做NER任务](https://download.csdn.net/download/weixin_42138525/15682991)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *3* [基于BERT-BiLSTM-CRF模型的中文实体识别](https://download.csdn.net/download/weixin_38675341/18409063)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"]
[ .reference_list ]
阅读全文