presto、druid、sparksql、kylin的对比分析

时间: 2023-04-20 10:02:05 浏览: 52
Presto、Druid、SparkSQL、Kylin是四种不同的分布式计算引擎,它们都可以用于大数据处理和分析。下面是它们的对比分析: 1. Presto:Presto是一个分布式SQL查询引擎,它可以在多个数据源上执行查询,包括Hadoop、Hive、MySQL等。Presto的优点是速度快、支持复杂查询、易于扩展和部署。缺点是不支持实时数据处理和数据仓库建模。 2. Druid:Druid是一个实时数据处理和分析引擎,它可以处理大量的实时数据,并提供快速的查询和聚合功能。Druid的优点是速度快、支持实时数据处理和多维度分析、易于扩展和部署。缺点是不支持复杂查询和数据仓库建模。 3. SparkSQL:SparkSQL是Apache Spark的一个模块,它提供了一个SQL查询引擎,可以在Spark集群上执行SQL查询。SparkSQL的优点是速度快、支持复杂查询、易于扩展和部署。缺点是不支持实时数据处理和数据仓库建模。 4. Kylin:Kylin是一个OLAP引擎,它可以将Hadoop上的数据转换为多维数据模型,并提供快速的查询和分析功能。Kylin的优点是支持复杂查询和多维度分析、易于扩展和部署。缺点是不支持实时数据处理和数据仓库建模。 综上所述,这四种分布式计算引擎各有优缺点,选择哪种引擎取决于具体的业务需求和数据处理场景。
相关问题

prestosql转sparksql

如果你想将 PrestoSQL 的查询转换为 SparkSQL 的查询,你需要考虑以下几个方面: 1. 语法差异:PrestoSQL 和 SparkSQL 有一些语法差异,因此你需要将 PrestoSQL 查询中的关键字和函数转换为 SparkSQL 的语法。例如:PrestoSQL 中的 `LIMIT` 语法在 SparkSQL 中是 `LIMIT n`。 2. 数据源的不同:PrestoSQL 和 SparkSQL 支持不同的数据源。在转换查询之前,你需要确认你的数据源是否在 SparkSQL 中可用。 3. 函数的差异:PrestoSQL 和 SparkSQL 支持不同的函数。在转换查询之前,你需要确认你的查询中使用的函数是否在 SparkSQL 中可用。 4. 配置和参数的不同:PrestoSQL 和 SparkSQL 有不同的配置和参数选项。在转换查询之前,你需要确认你的查询中使用的配置和参数是否在 SparkSQL 中可用。 总的来说,将 PrestoSQL 查询转换为 SparkSQL 查询需要一定的工作量和技术知识。你需要熟悉 PrestoSQL 和 SparkSQL 的语法、数据源、函数、配置和参数等方面的差异。

presto搭建以及和impala,sparksql对比

### 回答1: Presto是一种分布式SQL查询引擎,可用于处理大规模数据。搭建Presto需要安装Java和Presto软件,并配置相关参数。与Impala和SparkSQL相比,Presto具有更高的灵活性和可扩展性,可以处理更广泛的数据类型和格式。但是,Presto的性能可能不如Impala和SparkSQL,特别是在处理大规模数据时。因此,选择哪种查询引擎应该根据具体的需求和数据类型来决定。 ### 回答2: Presto是一个分布式的SQL查询引擎,可以用于实时查询大规模的数据。搭建Presto可以分为以下几个步骤: 1. 安装Java:Presto是基于Java开发的,因此需要先安装Java运行环境。 2. 下载Presto软件包:从官方网站下载Presto的最新版本软件包。 3. 配置Presto节点:根据实际情况,配置Presto节点的相关参数,如分配的内存、CPU等,并设置集群间的通信方式。 4. 配置Presto连接器:Presto支持连接多种数据源,需要根据需要配置相应的连接器,如MySQL、Hive等。 5. 启动Presto集群:按照指定的顺序启动Presto的协调器和工作节点,确保它们可以正常通信和协调任务。 对比impala和sparksql,Presto有以下几个特点: 1. 支持多种数据源:Presto可以连接多种数据源,包括关系型数据库、NoSQL数据库和分布式文件系统等,可以方便地进行跨数据源的查询和分析。 2. 兼容性和灵活性:Presto兼容标准的SQL语法,可以进行复杂的JOIN操作和子查询等,同时支持使用UDF扩展功能。Presto还提供了灵活的查询优化和调整功能,可以根据查询情况自动调整执行计划。 3. 分布式查询:Presto采用分布式查询引擎,可以并行处理大规模的数据,并且支持动态扩展集群规模,以适应不断增长的查询负载。 4. 实时性能:Presto通过使用内存进行计算和高效的查询引擎优化,可以达到毫秒级的查询延迟,适用于实时分析等对查询性能要求较高的场景。 5. 社区支持和生态系统:Presto是一个开源项目,有一个活跃的社区和庞大的用户群体,提供了完善的文档和支持。同时,Presto还有丰富的生态系统,可以与其他工具和平台进行集成,如Hadoop、Apache Kafka等。 综上所述,Presto是一个灵活、高性能的分布式查询引擎,可以满足复杂查询和实时分析的需求,同时具有广泛的兼容性和生态系统支持。 ### 回答3: Presto是一个开源的分布式SQL查询引擎,用于处理大规模的数据处理和分析任务。要搭建Presto,首先需要设置一个Presto集群,该集群包括一个或多个协调器节点和多个工作节点。协调器节点负责接收和处理查询请求,工作节点负责执行查询操作。搭建Presto还需要配置分布式存储系统(如Hadoop HDFS或Amazon S3),以及定义表和分区。 与Impala相比,Presto更加灵活,并且可以支持更广泛的数据源和格式。Impala是基于Hadoop生态系统的分析性SQL查询引擎,而Presto可以连接到多个数据源(如Hive、MySQL、Oracle、Cassandra等),并支持各种数据格式(如Parquet、CSV、JSON等)。Presto还具有更好的查询优化和执行性能,能够快速执行复杂的分析查询。 与Spark SQL相比,Presto具有更低的延迟和更好的交互性能。Presto将查询结果实时返回给用户,适合于需要即时响应的交互式查询场景。而Spark SQL则更侧重于大规模批处理和复杂的数据转换任务。Spark SQL基于Apache Spark引擎,可以在内存中处理数据,提供更高的吞吐量和并行处理能力。 总而言之,Presto是一个功能强大、灵活性高的分布式SQL查询引擎,适用于各种数据处理和分析任务。Impala更适合在Hadoop生态系统中进行快速的分析查询,而Spark SQL适用于大规模批处理和复杂的数据转换操作。选择适合项目需求的工具,可以根据数据源、查询需求和性能要求进行权衡。

相关推荐

### 回答1: Druid、Impala、Presto、Spark SQL、Kylin和Elasticsearch都是大数据处理领域的常见工具,它们都有自己的特点和优势。 Druid是一种高性能、列式存储的数据仓库,适用于实时数据分析和查询。它支持快速的聚合查询和多维分析,可以处理大规模的数据集。 Impala是一种基于内存的分布式SQL查询引擎,适用于交互式查询和数据分析。它可以直接查询Hadoop中的数据,支持复杂的SQL查询和高并发查询。 Presto是一种分布式SQL查询引擎,适用于交互式查询和数据分析。它可以查询多种数据源,包括Hadoop、关系型数据库和NoSQL数据库,支持复杂的SQL查询和高并发查询。 Spark SQL是一种基于Spark的SQL查询引擎,适用于大规模数据处理和分析。它可以查询多种数据源,包括Hadoop、关系型数据库和NoSQL数据库,支持复杂的SQL查询和高并发查询。 Kylin是一种OLAP引擎,适用于多维分析和查询。它可以处理大规模的数据集,支持复杂的多维查询和聚合查询。 Elasticsearch是一种分布式搜索和分析引擎,适用于实时数据分析和查询。它可以处理大规模的数据集,支持复杂的搜索和聚合查询。 总的来说,这些工具都有各自的特点和优势,根据具体的需求和场景选择合适的工具是很重要的。 ### 回答2: Druid、Impala、Presto、Spark SQL、Kylin和Elasticsearch,这些都是当前流行的数据存储和分析工具。它们都具备不同的分析功能和优点,适合于不同的数据分析场景。下面将从数据处理能力、性能、数据存储结构等方面对这些工具进行详细对比。 1. 数据处理能力 Druid是一种基于列存储的分布式实时分析系统,支持快速的离线批处理和流式数据处理。Druid是专门用于OLAP(在线分析处理)场景的数据存储和查询工具,支持高速聚合、过滤、分组、排序和多维查询等。Druid的查询速度非常快,适合于需要快速响应的实时分析场景。 Impala是一种基于内存的MPP(Massively Parallel Processing)分布式数据库管理系统,可以快速处理大量数据查询请求。Impala支持完整的SQL语言,而且其查询速度很快,是一种适合于SQL分析的工具。 Presto是一种分布式SQL查询引擎,与Impala类似,支持完整的SQL语言,并具有很高的查询速度。Presto可以查询多个数据源,例如Hadoop、MySQL、Hive等,是一个很好的数据分析工具。 Spark SQL是Apache Spark中的SQL引擎,支持完整的SQL语言和查询,并具有较高的处理速度。与Impala和Presto不同,Spark SQL可以处理离线和实时数据,并且提供了丰富的机器学习和图形处理功能。 Kylin是一个开源的分布式分析引擎,适用于大数据下的OLAP分析场景。Kylin使用多层架构来处理超大型数据,支持多维查询,并且可以处理PB级别的数据。 Elasticsearch是一个开源的全文搜索引擎,其功能包括文档索引并支持分布式实时搜索和分析。Elasticsearch具有高度的可伸缩性和性能,可以很好地处理PB级别的数据,适用于文本分析和实时搜索等场景。 2. 性能 Druid、Impala、Presto、Spark SQL、Kylin和Elasticsearch在处理大数据时都具有优异的性能。而Impala、Presto和Spark SQL的处理速度较快,且具有较好的并行计算能力和内置的压缩算法,支持并行多核计算和数据分片。 3. 数据存储结构 Druid采用了列存储的数据结构,而且使用了一种称为“旋转位图”的优化技术,这种技术可以大大提高查询性能。 Impala、Presto和Spark SQL采用的都是行级数据存储结构,这种结构可以使数据的读写效率更高。 Kylin使用多层架构的方式来缓存数据,以达到快速响应和计算,并且支持OLAP的多维度查询。 Elasticsearch采用倒排索引和分片式数据存储结构,以提高数据搜索的效率,并且支持实时查询和聚合查询功能。 综上所述,Druid、Impala、Presto、Spark SQL、Kylin和Elasticsearch都具有独特的优点和应用场景,可以满足不同的数据存储和分析需要。对于处理海量数据并需要实时响应的场景,可以选择Druid;对于SQL分析场景,可以选择Impala、Presto或Spark SQL;对于多维度OLAP分析场景,可以选择Kylin;而对于全文搜索和实时分析场景,则可以选择Elasticsearch。 ### 回答3: Druid/Impala/Presto/Spark SQL/Kylin/Elasticsearch都是非常流行的分布式查询引擎,它们可以在处理大规模数据时提供非常好的性能和速度。以下是它们的功能对比。 1. Druid由于其高速的查询引擎和极高的查询效率在实时大数据处理方面非常突出,它主要支持OLAP查询,而且提供了高度的可伸缩性和可扩展性,支持海量数据的查询和分析。 2. Impala是一种支持SQL的高速分析工具,内存存储,利用Hadoop内存进行查询,具有高度的并行度和可扩展性,可以快速处理大规模数据。 3. Presto是一种由Facebook开发的分布式SQL查询引擎,它使用内存来处理数据,支持多个数据源,提供了高度的扩展性和可伸缩性,具有非常好的性能和速度。 4. Spark SQL是Apache Spark的一部分,主要用于大规模数据处理,同时支持SQL和非SQL语言,它的查询引擎建立在Spark的内存计算引擎之上,支持多种数据存储器。 5. Kylin是一个OLAP引擎,它使用Apache Hadoop构建,具有高效的查询处理能力,可通过多种方式查询数据,支持多个数据源,提供的查询速度非常快。 6. Elasticsearch是一种搜索引擎,它使用Lucene搜索库,主要用于全文搜索、日志分析和复杂数据分析,提供了高效的搜索和聚合功能,可以在实时或批量处理模式下使用。 综上所述,Druid、Impala、Presto、Spark SQL、Kylin、Elasticsearch各有优缺点,不同的场景和需求需要结合实际情况选择使用。

最新推荐

presto on yarn安装部署.docx

presto on yarn的安装部署文档。已经在测试环境安装,可访问生产环境hive数据,访问速度快。presto版本0.220

Flink +hudi+presto 流程图.docx

Flink +hudi+presto 流程图.docx 自己实现后画的一个流程图,便于理解

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

语义Web动态搜索引擎:解决语义Web端点和数据集更新困境

跟踪:PROFILES数据搜索:在网络上分析和搜索数据WWW 2018,2018年4月23日至27日,法国里昂1497语义Web检索与分析引擎Semih Yumusak†KTO Karatay大学,土耳其semih. karatay.edu.trAI 4 BDGmbH,瑞士s. ai4bd.comHalifeKodazSelcukUniversity科尼亚,土耳其hkodaz@selcuk.edu.tr安德烈亚斯·卡米拉里斯荷兰特文特大学utwente.nl计算机科学系a.kamilaris@www.example.com埃利夫·尤萨尔KTO KaratayUniversity科尼亚,土耳其elif. ogrenci.karatay.edu.tr土耳其安卡拉edogdu@cankaya.edu.tr埃尔多安·多杜·坎卡亚大学里扎·埃姆雷·阿拉斯KTO KaratayUniversity科尼亚,土耳其riza.emre.aras@ogrenci.karatay.edu.tr摘要语义Web促进了Web上的通用数据格式和交换协议,以实现系统和机器之间更好的互操作性。 虽然语义Web技术被用来语义注释数据和资源,更容易重用,这些数据源的特设发现仍然是一个悬 而 未 决 的 问 题 。 流 行 的 语 义 Web �

matlabmin()

### 回答1: `min()`函数是MATLAB中的一个内置函数,用于计算矩阵或向量中的最小值。当`min()`函数接收一个向量作为输入时,它返回该向量中的最小值。例如: ``` a = [1, 2, 3, 4, 0]; min_a = min(a); % min_a = 0 ``` 当`min()`函数接收一个矩阵作为输入时,它可以按行或列计算每个元素的最小值。例如: ``` A = [1, 2, 3; 4, 0, 6; 7, 8, 9]; min_A_row = min(A, [], 2); % min_A_row = [1;0;7] min_A_col = min(A, [],

TFT屏幕-ILI9486数据手册带命令标签版.pdf

ILI9486手册 官方手册 ILI9486 is a 262,144-color single-chip SoC driver for a-Si TFT liquid crystal display with resolution of 320RGBx480 dots, comprising a 960-channel source driver, a 480-channel gate driver, 345,600bytes GRAM for graphic data of 320RGBx480 dots, and power supply circuit. The ILI9486 supports parallel CPU 8-/9-/16-/18-bit data bus interface and 3-/4-line serial peripheral interfaces (SPI). The ILI9486 is also compliant with RGB (16-/18-bit) data bus for video image display. For high speed serial interface, the ILI9486 also provides one data and clock lane and supports up to 500Mbps on MIPI DSI link. And also support MDDI interface.

数据搜索和分析

跟踪:PROFILES数据搜索:在网络上分析和搜索数据WWW 2018,2018年4月23日至27日,法国里昂1485表征数据集搜索查询艾米莉亚·卡普尔扎克英国南安普敦大学开放数据研究所emilia. theodi.org珍妮·坦尼森英国伦敦开放数据研究所jeni@theodi.org摘要在Web上生成和发布的数据量正在迅速增加,但在Web上搜索结构化数据仍然存在挑战。在本文中,我们探索数据集搜索分析查询专门为这项工作产生的通过众包-ING实验,并比较它们的搜索日志分析查询的数据门户网站。搜索环境的变化以及我们给人们的任务改变了生成的查询。 我们发现,在我们的实验中发出的查询比数据门户上的数据集的搜索查询要长得多。 它们还包含了七倍以上的地理空间和时间信息的提及,并且更有可能被结构化为问题。这些见解可用于根据数据集搜索的特定信息需求和特征关键词数据集搜索,�

os.listdir()

### 回答1: os.listdir() 是一个 Python 函数,用于列出指定目录中的所有文件和子目录的名称。它需要一个字符串参数,表示要列出其内容的目录的路径。例如,如果您想要列出当前工作目录中的文件和目录,可以使用以下代码: ``` import os dir_path = os.getcwd() # 获取当前工作目录 files = os.listdir(dir_path) # 获取当前工作目录中的所有文件和目录 for file in files: print(file) ``` 此代码将列出当前工作目录中的所有文件和目录的名称。 ### 回答2: os.l

freescale IMX6 开发板原理图

freesacle 的arm cortex-a9的双核 四核管脚兼容CPU开发板原理图。

自适应学习率的矩阵近似协同过滤算法(AdaError)

首页>外文书>人文>心理励志> User Modeling,WWW 2018,2018年4月23日至27日,法741AdaError:一种自适应学习率的矩阵近似协同过滤李东升IBM中国研究院中国上海ldsli@cn.ibm.com上海复旦大学,中国lutun@fudan.edu.cn摘要朝晨IBM中国研究院中国上海cchao@cn.ibm.com李尚科罗拉多大学博尔德分校美国科罗拉多州博尔德li. colorado.edu秦律科罗拉多大学博尔德分校美国科罗拉多州博尔德www.example.comqin.lv @colorado.edu复旦大学上海,中国ninggu@fudan.edu.cnACM参考格式:HansuGuSeagateTechnology美国科罗拉多guhansu@gmail.comStephen M.朱IBM研究院-中国上海,中国schu@cn.ibm.com诸如随机梯度下降的基于梯度的学习方法被广泛用于基于矩阵近似的协同过滤算法中,以基于观察到的用户项目评级来训练推荐模型。一个主要的困难 在现有的基于梯度的学习方法中,确定适当的学习率是一个重要的问题,因为如果�