基于pytorch构建卷积神经网络实现RNA序列预测并优化 代码
时间: 2024-03-23 08:37:41 浏览: 92
好的,以下是基于PyTorch构建卷积神经网络实现RNA序列预测并优化的完整代码示例:
``` python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
# 准备RNA序列数据集
class RNA_Dataset(Dataset):
def __init__(self, data_file):
self.sequences = []
self.labels = []
with open(data_file, 'r') as f:
for line in f:
line = line.strip()
if not line:
continue
if line.startswith('>'):
label = int(line.split()[1])
self.labels.append(label)
else:
sequence = [int(n) for n in line]
self.sequences.append(sequence)
self.sequences = torch.tensor(self.sequences, dtype=torch.float32)
self.labels = torch.tensor(self.labels, dtype=torch.long)
def __len__(self):
return len(self.labels)
def __getitem__(self, index):
return self.sequences[index], self.labels[index]
train_dataset = RNA_Dataset('train.fasta')
val_dataset = RNA_Dataset('val.fasta')
test_dataset = RNA_Dataset('test.fasta')
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=64, shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)
# 定义卷积神经网络模型
class RNA_CNN(nn.Module):
def __init__(self, num_classes=2):
super(RNA_CNN, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv1d(4, 32, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool1d(kernel_size=2, stride=2)
)
self.conv2 = nn.Sequential(
nn.Conv1d(32, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool1d(kernel_size=2, stride=2)
)
self.fc1 = nn.Linear(64 * 50, 1024)
self.fc2 = nn.Linear(1024, num_classes)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = x.view(x.size(0), -1)
x = self.fc1(x)
x = self.fc2(x)
return x
model = RNA_CNN()
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练模型
num_epochs = 10
for epoch in range(num_epochs):
for i, (sequences, labels) in enumerate(train_loader):
optimizer.zero_grad()
outputs = model(sequences)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# validation
correct = 0
total = 0
with torch.no_grad():
for sequences, labels in val_loader:
outputs = model(sequences)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Epoch [{}/{}], Loss: {:.4f}, Validation Accuracy: {:.2f}%'
.format(epoch+1, num_epochs, loss.item(), 100 * correct / total))
# 评估模型性能
with torch.no_grad():
correct = 0
total = 0
for sequences, labels in test_loader:
outputs = model(sequences)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Test Accuracy: {:.2f}%'.format(100 * correct / total))
```
在上面的代码中,我们使用`RNA_Dataset`类来读取RNA序列数据集,使用`RNA_CNN`类定义卷积神经网络模型,使用交叉熵损失函数和Adam优化器进行训练,并使用验证集来监控模型的性能。在训练结束后,我们使用测试集来评估模型的性能。你可以根据自己的数据集和需求,对代码进行适当修改。
阅读全文