#外点法(能运行出来) import math import sympy import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D plt.ion() fig = plt.figure() ax = Axes3D(fig) def draw(x,index,M): # F = f + MM * alpha # FF = sympy.lambdify((x1, x2), F, 'numpy') Z = FF(*(X, Y,M)) ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow',alpha=0.5) ax.scatter(x[0], x[1], FF(*(x[0],x[1],M)), c='r',s=80) ax.text(x[0], x[1], FF(*(x[0],x[1],M)), 'here:(%0.3f,%0.3f)' % (x[0], x[1])) ax.set_zlabel('F') # 坐标轴 ax.set_ylabel('X2') ax.set_xlabel('X1') plt.pause(0.1) # plt.show() # plt.savefig('./image/%03d' % index) plt.cla() C = 10 # 放大系数 M = 1 # 惩罚因子 epsilon = 1e-5 # 终止限 x1, x2 = sympy.symbols('x1:3') MM=sympy.symbols('MM') f = -x1 + x2 h = x1 + x2 - 1 # g=sympy.log(x2) if sympy.log(x2)<0 else 0 g = sympy.Piecewise((x2-1, x2 < 1), (0, x2 >= 1)) # u=lambda x: alpha = h ** 2 + g ** 2 F = f + MM * alpha # 梯度下降来最小化F def GD(x,M,n): # F = f + M * alpha # delta_x = 1e-11 # 数值求导 # t = 0.0001 # 步长 e = 0.001 # 极限 # my_print(e) np.array(x) for i in range(15): t = sympy.symbols('t') grad = np.asarray( [sympy.diff(F, x1).subs([(x1, x[0]), (x2, x[1]),(MM,M)]), sympy.diff(F, x2).subs([(x1, x[0]), (x2, x[1]),(MM,M)])]) # print('g',grad) # print((x-t*grad)) # print(F.subs([(x1,(x-t*grad)[0]),(x2,(x-t*grad)[1])])) t = sympy.solve(sympy.diff(F.subs([(x1, (x - t * grad)[0]), (x2, (x - t * grad)[1]),(MM,M)]), t), t) print('t',t) x = x - t * grad print('x', x) # print('mmm',M) draw(x,n*10+i,M) # my_print(np.linalg.norm(grad)) # print(type(grad)) if (abs(grad[0]) < e and abs(grad[1]) < e): # print(np.linalg.norm(grad)) print('g', grad) break return list(x) pass x = [-0.5, 0.2] X = np.arange(0, 4, 0.25) Y = np.arange(0, 4,
时间: 2023-12-17 21:03:30 浏览: 172
0.25) # 定义网格点坐标 X, Y = np.meshgrid(X, Y) # 生成网格点 FF = sympy.lambdify((x1, x2,MM), F, 'numpy') # 将表达式转化为可计算的函数 draw(x,0,M) # 绘制函数图像 for i in range(5): # 迭代次数为5次 x = GD(x,M,i) # 梯度下降求解极小值 M = C * M # 更新惩罚因子 print('M',M) # plt.savefig('./image/%03d' % index) plt.ioff() plt.show()
这是一个使用外点法求解带约束非线性规划问题的 Python 代码,其中 F 为目标函数,alpha 为罚函数,x1, x2 为自变量,MM 为惩罚因子。函数 GD 为梯度下降求解极小值。代码中还包含了绘制函数图像的 draw 函数。
相关问题
请使用外点罚函数方法实现下面的python代码 import numpy as np from scipy.optimize import minimize def objective(x): return -x[0] - x[1] def constraint(x): return x[0]**2 + x[1]**2 - 1 def penalty_func(x,C): return objective(x) + C*(constraint(x))**2 def objective_with_penalty(x,C): return penalty_func(x, C) x0 = np.array([1,0]) C=1000 problem = {'type':'eq','fun':constraint} result = minimize(lambda x: objective_with_penalty(x, C),x0,constraints = problem) print('最优解为:',result.x) print('最优值为:',result.fun)
好的,我知道了。这是一个优化问题,在满足约束条件的前提下,求解目标函数的最小值。其中,约束条件为 $x_1^2+x_2^2=1$,目标函数为 $-x_1-x_2$。
外点罚函数法的基本思想是,在目标函数中加入一个罚函数,使得罚函数在满足约束条件时为0,在不满足约束条件时罚函数的值越大,从而惩罚不满足约束条件的解。通过不断增大罚函数的惩罚系数,可以逐渐将不满足约束条件的解“推”到满足约束条件的区域内。
具体实现代码如下:
```python
import numpy as np
from scipy.optimize import minimize
def objective(x):
return -x[0] - x[1]
def constraint(x):
return x[0]**2 + x[1]**2 - 1
def penalty_func(x,C):
return objective(x) + C*(max(0,constraint(x)))**2
def objective_with_penalty(x,C):
return penalty_func(x, C)
x0 = np.array([1,0])
C=1000
problem = {'type':'eq','fun':constraint}
result = minimize(lambda x: objective_with_penalty(x, C),x0)
print('最优解为:',result.x)
print('最优值为:',result.fun)
```
其中,目标函数加入了罚函数 $C*max(0,constraint(x))^2$,其中 $max(0,constraint(x))$ 表示约束条件不满足时的惩罚项,$C$ 表示惩罚系数,$C$ 值越大,惩罚力度越大。在每次迭代中,都会重新计算目标函数和约束条件,然后调用 minimize 函数求解最优解。
内点法和外点法python
内点法和外点法是两种常用的优化算法,用于求解线性规划问题。下面分别介绍一下内点法和外点法在Python中的实现。
1. 内点法(Interior Point Method):
内点法是一种通过在可行域内部搜索最优解的方法。它通过引入一个罚函数来将约束条件转化为目标函数的一部分,并通过迭代的方式逐渐接近最优解。在Python中,可以使用scipy库中的optimize.linprog函数来实现内点法。
示例代码如下:
```python
import numpy as np
from scipy.optimize import linprog
# 定义目标函数的系数矩阵
c = np.array([1, 2, 3])
# 定义不等式约束条件的系数矩阵
A = np.array([[1, 1, 1],
[-1, 2, 0],
[0, -1, 2]])
# 定义不等式约束条件的上界
b = np.array([6, 4, 3])
# 使用内点法求解线性规划问题
res = linprog(c, A_ub=A, b_ub=b, method='interior-point')
print(res)
```
2. 外点法(Exterior Point Method):
外点法是一种通过在可行域外部搜索最优解的方法。它通过引入一个惩罚项来将目标函数转化为一个无约束问题,并通过迭代的方式逐渐接近最优解。在Python中,可以使用cvxpy库来实现外点法。
示例代码如下:
```python
import cvxpy as cp
# 定义目标函数的变量
x = cp.Variable(3)
# 定义目标函数
objective = cp.Minimize(cp.sum(x))
# 定义不等式约束条件
constraints = [x >= 0,
x + x + x <= 6,
-x[0] + 2*x <= 4,
-x + 2*x <= 3]
# 定义问题并求解
problem = cp.Problem(objective, constraints)
problem.solve()
print("最优解:", x.value)
print("最优目标值:", problem.value)
```
阅读全文