在Matlab中用二元牛顿迭代法求解非线性方程组,非线性方程组为隐函数
时间: 2023-08-07 15:08:16 浏览: 158
二元牛顿迭代法可以用来求解非线性方程组,其中每个方程都是隐函数。该方法需要假定方程组的解是可微的,并且需要提供一个初始点。
假设我们要求解以下非线性方程组:
f(x,y)=0
g(x,y)=0
其中$f$和$g$都是隐函数,我们可以使用以下迭代公式来求解:
$\begin{bmatrix} x_{k+1} \\ y_{k+1} \end{bmatrix} = \begin{bmatrix} x_k \\ y_k \end{bmatrix} - J_f^{-1}(x_k,y_k)\begin{bmatrix} f(x_k,y_k) \\ g(x_k,y_k) \end{bmatrix}$
其中,$J_f$是$f$和$g$的雅可比矩阵,其定义如下:
$J_f(x,y) = \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{bmatrix}$
初始点$(x_0,y_0)$可以根据实际情况进行选择。
下面是使用Matlab实现二元牛顿迭代法求解非线性方程组的示例代码:
```matlab
function [x,y] = newton2(F,J,x0,tol,maxit)
% F: 非线性方程组的函数句柄,输入为向量[x;y],输出为向量[f(x,y);g(x,y)]
% J: 非线性方程组的雅可比矩阵函数句柄,输入为向量[x;y],输出为雅可比矩阵
% x0: 初始点,为向量[x0;y0]
% tol: 迭代收敛的误差容限,默认为1e-6
% maxit: 最大迭代次数,默认为100
if nargin < 5
maxit = 100;
end
if nargin < 4
tol = 1e-6;
end
x = x0;
for k = 1:maxit
Fx = F(x);
if norm(Fx) < tol
break;
end
Jx = J(x);
s = -Jx\Fx;
x = x + s;
end
y = x(2);
x = x(1);
end
```
其中,$F$和$J$分别是非线性方程组的函数句柄和雅可比矩阵函数句柄,其定义如下:
```matlab
function Fx = F(x)
Fx = [f(x(1),x(2));g(x(1),x(2))];
end
function Jx = J(x)
Jx = [dfdx(x(1),x(2)), dfdy(x(1),x(2)); dgdx(x(1),x(2)), dgdy(x(1),x(2))];
end
```
其中,$f$和$g$是非线性方程组中的两个隐函数,$dfdx$、$dfdy$、$dgdx$和$dgdy$分别是其对应的偏导数函数。
需要注意的是,二元牛顿迭代法可能会出现迭代不收敛的情况,此时可以尝试使用其他方法进行求解。
阅读全文