int main(void) { LED_Init(); ADC1_Init(); printf("\n\r ADC 测试实验 \r"); while (1) { ADC_ConvertedValueLocal =(float) ADC_ConvertedValue/4096*3.3; printf("\r\n 当前电压采集值16进制表示 = 0x%04X \r\n", ADC_ConvertedValue); printf("\r\n 当前电压的模拟值= %f V \r\n",ADC_ConvertedValueLocal); GPIO_ResetBits(GPIOB,GPIO_Pin_5); // printf("LED灯亮,系统ADC正常 \n"); Delay_ms(500); } }

时间: 2023-10-30 19:08:15 浏览: 37
这是一段基于STM32的ADC测试程序,主要功能是读取ADC采集的电压值并输出到串口,同时控制LED灯闪烁表示程序正常运行。 程序主要流程如下: 1. 初始化LED和ADC模块。 2. 进入主循环,不断读取ADC采集的电压值并计算其模拟值。 3. 将采集的电压值和计算出的模拟值输出到串口。 4. 控制LED灯闪烁,表示程序正常运行。 需要注意的是,程序中使用了延时函数Delay_ms(),这是一个自定义的延时函数,用于实现程序中的延时等待功能。另外,程序中还使用了GPIO_ResetBits()函数控制LED灯的亮灭。 如果您有关于该程序的具体问题或需要进一步的解释,请具体描述您的问题,我会尽力帮助解决。
相关问题

注释以下每一行代码#include "bflb_adc.h" #include "bflb_mtimer.h" #include "board.h" struct bflb_device_s *adc; #define TEST_ADC_CHANNELS 2 #define TEST_COUNT 10 struct bflb_adc_channel_s chan[] = { { .pos_chan = ADC_CHANNEL_2, .neg_chan = ADC_CHANNEL_GND }, { .pos_chan = ADC_CHANNEL_GND, .neg_chan = ADC_CHANNEL_3 }, }; int main(void) { board_init(); board_adc_gpio_init(); adc = bflb_device_get_by_name("adc"); /* adc clock = XCLK / 2 / 32 */ struct bflb_adc_config_s cfg; cfg.clk_div = ADC_CLK_DIV_32; cfg.scan_conv_mode = true; cfg.continuous_conv_mode = false; cfg.differential_mode = true; cfg.resolution = ADC_RESOLUTION_16B; cfg.vref = ADC_VREF_3P2V; bflb_adc_init(adc, &cfg); bflb_adc_channel_config(adc, chan, TEST_ADC_CHANNELS); for (uint32_t i = 0; i < TEST_COUNT; i++) { bflb_adc_start_conversion(adc); while (bflb_adc_get_count(adc) < TEST_ADC_CHANNELS) { bflb_mtimer_delay_ms(1); } for (size_t j = 0; j < TEST_ADC_CHANNELS; j++) { struct bflb_adc_result_s result; uint32_t raw_data = bflb_adc_read_raw(adc); printf("raw data:%08x\r\n", raw_data); bflb_adc_parse_result(adc, &raw_data, &result, 1); printf("pos chan %d,neg chan %d,%d mv \r\n", result.pos_chan, result.neg_chan, result.millivolt); } bflb_adc_stop_conversion(adc); bflb_mtimer_delay_ms(100); } while (1) { } }

这段代码是使用芯片上的ADC模块读取外部电压信号,并将读取结果打印出来。具体注释如下: ``` #include "bflb_adc.h" // 包含 ADC 操作库的头文件 #include "bflb_mtimer.h" // 包含毫秒级延时库的头文件 #include "board.h" // 包含与硬件板子相关的头文件 struct bflb_device_s *adc; // 定义一个指向 ADC 设备的结构体指针 #define TEST_ADC_CHANNELS 2 // 定义测试的 ADC 通道数量为 2 #define TEST_COUNT 10 // 定义测试的次数为 10 struct bflb_adc_channel_s chan[] = { // 定义 ADC 通道的结构体数组 {.pos_chan = ADC_CHANNEL_2, .neg_chan = ADC_CHANNEL_GND}, {.pos_chan = ADC_CHANNEL_GND, .neg_chan = ADC_CHANNEL_3}, }; int main(void) { // 主函数 board_init(); // 初始化板子 board_adc_gpio_init(); // 初始化 ADC 相关的 GPIO adc = bflb_device_get_by_name("adc"); // 获取 ADC 设备的结构体指针 /* adc clock = XCLK / 2 / 32 */ // 设置 ADC 的时钟分频为 XCLK/2/32 struct bflb_adc_config_s cfg; cfg.clk_div = ADC_CLK_DIV_32; cfg.scan_conv_mode = true; cfg.continuous_conv_mode = false; cfg.differential_mode = true; cfg.resolution = ADC_RESOLUTION_16B; cfg.vref = ADC_VREF_3P2V; bflb_adc_init(adc, &cfg); // 初始化 ADC bflb_adc_channel_config(adc, chan, TEST_ADC_CHANNELS); // 配置 ADC 通道 for (uint32_t i = 0; i < TEST_COUNT; i++) { // 循环读取 ADC 的值 bflb_adc_start_conversion(adc); // 启动 ADC 转换 while (bflb_adc_get_count(adc) < TEST_ADC_CHANNELS) { // 等待 ADC 转换完成 bflb_mtimer_delay_ms(1); // 延时 1 毫秒 } for (size_t j = 0; j < TEST_ADC_CHANNELS; j++) { // 遍历每个 ADC 通道 struct bflb_adc_result_s result; // 定义保存 ADC 转换结果的结构体 uint32_t raw_data = bflb_adc_read_raw(adc); // 读取 ADC 原始数据 printf("raw data:%08x\r\n", raw_data); // 打印原始数据 bflb_adc_parse_result(adc, &raw_data, &result, 1); // 解析 ADC 转换结果 printf("pos chan %d,neg chan %d,%d mv \r\n", result.pos_chan, result.neg_chan, result.millivolt); // 打印解析后的数据 } bflb_adc_stop_conversion(adc); // 停止 ADC 转换 bflb_mtimer_delay_ms(100); // 延时 100 毫秒 } while (1) { // 循环等待 } } ```

int main(void) { // https://blog.csdn.net/p1279030826/article/details/103250849 NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); // ÉèÖÃÖжÏÓÅÏȼ¶·Ö×é2 delay_init(); SERVO_Init(); uart_init(9600); // ´®¿Ú³õʼ»¯Îª9600 esp8266Ϊ9600 esp32Ϊ115200 //ServoOpen90(); printf("initializing 1..#\r\n"); PIN_OUT_Init(); printf("initializing 2..#\r\n"); // ADC INIT ËÄͨµÀÄ£ÄâÁ¿²É¼¯ PA0 - PA3 printf("initializing 3..#\r\n"); ADC_Init_Config(); printf("initializing 4..#\r\n"); TIM3_Int_Init(9999,7199); DHT11_Init(); printf("initializing DHT11_Init..#\r\n"); ServoOpen0(); sg90_status = 0;解释代码

这段代码是一个基于STM32的嵌入式系统的C语言代码,主要实现的功能是初始化一些硬件模块,如ADC(模拟-数字转换器)、DHT11传感器和SG90舵机。其中,函数`NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2)`用于配置中断优先级分组,函数`delay_init()`用于初始化延时函数,函数`SERVO_Init()`用于舵机的初始化,函数`uart_init(9600)`用于初始化串口通信,函数`PIN_OUT_Init()`用于初始化输出引脚,函数`ADC_Init_Config()`用于初始化ADC模块。函数`TIM3_Int_Init(9999,7199)`用于初始化定时器,函数`DHT11_Init()`用于初始化DHT11传感器,函数`ServoOpen0()`用于将SG90舵机旋转到0度位置,变量`sg90_status`的值被初始化为0。在这段代码中,还使用了printf函数输出一些调试信息。

相关推荐

#include "bflb_adc.h" #include "bflb_mtimer.h" #include "board.h" struct bflb_device_s adc; #define TEST_ADC_CHANNELS 2 #define TEST_COUNT 10 struct bflb_adc_channel_s chan[] = { { .pos_chan = ADC_CHANNEL_2, .neg_chan = ADC_CHANNEL_GND }, { .pos_chan = ADC_CHANNEL_GND, .neg_chan = ADC_CHANNEL_3 }, }; int main(void) { board_init(); board_adc_gpio_init(); adc = bflb_device_get_by_name("adc"); / adc clock = XCLK / 2 / 32 */ struct bflb_adc_config_s cfg; cfg.clk_div = ADC_CLK_DIV_32; cfg.scan_conv_mode = true; cfg.continuous_conv_mode = false; cfg.differential_mode = true; cfg.resolution = ADC_RESOLUTION_16B; cfg.vref = ADC_VREF_3P2V; bflb_adc_init(adc, &cfg); bflb_adc_channel_config(adc, chan, TEST_ADC_CHANNELS); for (uint32_t i = 0; i < TEST_COUNT; i++) { bflb_adc_start_conversion(adc); while (bflb_adc_get_count(adc) < TEST_ADC_CHANNELS) { bflb_mtimer_delay_ms(1); } for (size_t j = 0; j < TEST_ADC_CHANNELS; j++) { struct bflb_adc_result_s result; uint32_t raw_data = bflb_adc_read_raw(adc); printf("raw data:%08x\r\n", raw_data); bflb_adc_parse_result(adc, &raw_data, &result, 1); printf("pos chan %d,neg chan %d,%d mv \r\n", result.pos_chan, result.neg_chan, result.millivolt); } bflb_adc_stop_conversion(adc); bflb_mtimer_delay_ms(100); } while (1) { } }根据以上代码对bl618程序的编写对以下stm32中代码#include "stm32f10x.h" #include "delay.h" #include "FSR.h" #include "usart.h" #include "adc.h" #define PRESS_MIN 20 #define PRESS_MAX 6000 #define VOLTAGE_MIN 150 #define VOLTAGE_MAX 3300 u8 state = 0; u16 val = 0; u16 value_AD = 0; long PRESS_AO = 0; int VOLTAGE_AO = 0; long map(long x, long in_min, long in_max, long out_min, long out_max); int main(void) { delay_init(); NVIC_Configuration(); uart_init(9600); Adc_Init(); delay_ms(1000); printf("Test start\r\n"); while(1) { value_AD = Get_Adc_Average(1,10); VOLTAGE_AO = map(value_AD, 0, 4095, 0, 3300); if(VOLTAGE_AO < VOLTAGE_MIN) { PRESS_AO = 0; } else if(VOLTAGE_AO > VOLTAGE_MAX) { PRESS_AO = PRESS_MAX; } else { PRESS_AO = map(VOLTAGE_AO, VOLTAGE_MIN, VOLTAGE_MAX, PRESS_MIN, PRESS_MAX); } printf("ADÖµ = %d,µçѹ = %d mv,ѹÁ¦ = %ld g\r\n",value_AD,VOLTAGE_AO,PRESS_AO); delay_ms(500); } } long map(long x, long in_min, long in_max, long out_min, long out_max) { return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min; }移植到bl618进行改写

对下面代码进行详细解释,解释每一行含义#include "common.h" #include "include.h" #include "dht11.h" uint16 vol[4]; uint8 dispCh = 0; uint8 humi_table1; int buffer[5]; void timer_init(uint16 ms) { pit_init_ms(PIT0, ms); //定时 1000 个bus时钟 后中断 set_vector_handler(PIT0_VECTORn, pit0_hander); // 设置中断复位函数到中断向量表里 enable_irq(PIT0_IRQn); } void KeyDown_Proc(uint8 key) { switch(key) { case 2: // up dispCh++; if(dispCh>3) dispCh=0; break; case 4: // down break; case 5: // enter break; case 11: break; case 12: break; case 8: break; case 9: break; default: break; } } void Key_Proc(void) { mKEY_MSG keyMsg; keyMsg = key_check(); switch(keyMsg.mstatus) { case mKEY_DOWN: KeyDown_Proc(keyMsg.value); printf("k_down = %d\r\n", keyMsg.value); break; case mKEY_HOLD: printf("k_hold = %d\r\n", keyMsg.value); break; default: break; } } void Sensor_init(void) { adc_init(ADC0, AD12); // ptb2 adc_init(ADC0, AD13); // ptb3 adc_init(ADC1, AD10); // ptb4 adc_init(ADC1, AD11); // ptb5 } #define STDVREF 3300 #define STDBIT ((1<<12)) void Sensor_Proc(void) { uint16 adVal; adVal = ad_mid(ADC0, AD12, ADC_12bit); vol[0] = STDVREF*adVal/STDBIT; adVal = ad_mid(ADC0, AD13, ADC_12bit); vol[1] = STDVREF*adVal/STDBIT; adVal = ad_mid(ADC1, AD10, ADC_12bit); vol[2] = STDVREF*adVal/STDBIT; adVal = ad_mid(ADC1, AD11, ADC_12bit); vol[3] = STDVREF*adVal/STDBIT; // printf("%d,%d,%d,%d\r\n", vol[0], vol[1], vol[2], vol[3]); } void beep_init(void) { gpio_init(PTA10, GPO,1); } void beep(void) { gpio_set(PTA10, 0); lptmr_delay_ms(2); gpio_set(PTA10, 1); lptmr_delay_ms(2); } void main() { uint8 te[1][24]; led_init(LED0); ui_init(); timer_init(1); key_init(); smg_csh(); beep_init(); Sensor_init(); while(1) { Sensor_Proc(); Key_Proc(); smg_set(buffer[0],2); //DELAY_MS(20); sprintf((char*)te[0], "Source: %d\0",vol[1]/10); switch(dispCh) { case 0: Init_UI(0); break; case 1: smg_set(vol[1], 2); LCD_Print(4,2,te[0]); if(vol[1]/10>10) { beep(); } break; } //smg_set(vol[1], 5); DELAY_MS(300); LCD_CLS(); //清屏 } }

最新推荐

recommend-type

服务器虚拟化部署方案.doc

服务器、电脑、
recommend-type

北京市东城区人民法院服务器项目.doc

服务器、电脑、
recommend-type

求集合数据的均方差iction-mast开发笔记

求集合数据的均方差
recommend-type

Wom6.3Wom6.3Wom6.3

Wom6.3Wom6.3Wom6.3
recommend-type

VMP技术解析:Handle块优化与壳模板初始化

"这篇学习笔记主要探讨了VMP(Virtual Machine Protect,虚拟机保护)技术在Handle块优化和壳模板初始化方面的应用。作者参考了看雪论坛上的多个资源,包括关于VMP还原、汇编指令的OpCode快速入门以及X86指令编码内幕的相关文章,深入理解VMP的工作原理和技巧。" 在VMP技术中,Handle块是虚拟机执行的关键部分,它包含了用于执行被保护程序的指令序列。在本篇笔记中,作者详细介绍了Handle块的优化过程,包括如何删除不使用的代码段以及如何通过指令变形和等价替换来提高壳模板的安全性。例如,常见的指令优化可能将`jmp`指令替换为`push+retn`或者`lea+jmp`,或者将`lodsbyteptrds:[esi]`优化为`moval,[esi]+addesi,1`等,这些变换旨在混淆原始代码,增加反逆向工程的难度。 在壳模板初始化阶段,作者提到了1.10和1.21两个版本的区别,其中1.21版本增加了`Encodingofap-code`保护,增强了加密效果。在未加密时,代码可能呈现出特定的模式,而加密后,这些模式会被混淆,使分析更加困难。 笔记中还提到,VMP会使用一个名为`ESIResults`的数组来标记Handle块中的指令是否被使用,值为0表示未使用,1表示使用。这为删除不必要的代码提供了依据。此外,通过循环遍历特定的Handle块,并依据某种规律(如`v227&0xFFFFFF00==0xFACE0000`)进行匹配,可以找到需要处理的指令,如`push0xFACE0002`和`movedi,0xFACE0003`,然后将其替换为安全的重定位值或虚拟机上下文。 在结构体使用方面,笔记指出壳模板和用户代码都会通过`Vmp_AllDisassembly`函数进行解析,而且0x8和0x10字段通常都指向相同的结构体。作者还提到了根据`pNtHeader_OptionalHeader.Magic`筛选`ESI_Matching_Array`数组的步骤,这可能是为了进一步确定虚拟机上下文的设置。 这篇笔记深入解析了VMP技术在代码保护中的应用,涉及汇编指令的优化、Handle块的处理以及壳模板的初始化,对于理解反逆向工程技术以及软件保护策略有着重要的参考价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】音频处理基础:使用Librosa

![【进阶】音频处理基础:使用Librosa](https://picx.zhimg.com/80/v2-a39e5c9bff1d920097341591ca8a2dfe_1440w.webp?source=1def8aca) # 2.1 Librosa库的安装和导入 Librosa库是一个用于音频处理的Python库。要安装Librosa库,请在命令行中输入以下命令: ``` pip install librosa ``` 安装完成后,可以通过以下方式导入Librosa库: ```python import librosa ``` 导入Librosa库后,就可以使用其提供的各种函数
recommend-type

python中字典转换成json

在Python中,你可以使用`json`模块将字典转换为JSON格式的字符串。下面是一个简单的示例: ```python import json # 假设我们有一个字典 dict_data = { "name": "John", "age": 30, "city": "New York" } # 使用json.dumps()函数将字典转换为JSON json_string = json.dumps(dict_data) print(json_string) # 输出:{"name": "John", "age": 30, "city": "New York"}
recommend-type

C++ Primer 第四版更新:现代编程风格与标准库

"Cpp Primer第四版中文版(电子版)1" 本书《Cpp Primer》第四版是一本深入浅出介绍C++编程语言的教程,旨在帮助初学者和有经验的程序员掌握现代C++编程技巧。作者在这一版中进行了重大更新,以适应C++语言的发展趋势,特别是强调使用标准库来提高编程效率。书中不再过于关注底层编程技术,而是将重点放在了标准库的运用上。 第四版的主要改动包括: 1. 内容重组:为了反映现代C++编程的最佳实践,书中对语言主题的顺序进行了调整,使得学习路径更加顺畅。 2. 添加辅助学习工具:每章增设了“小结”和“术语”部分,帮助读者回顾和巩固关键概念。此外,重要术语以黑体突出,已熟悉的术语以楷体呈现,以便读者识别。 3. 特殊标注:用特定版式标注关键信息,提醒读者注意语言特性,避免常见错误,强调良好编程习惯,同时提供通用的使用技巧。 4. 前后交叉引用:增加引用以帮助读者理解概念之间的联系。 5. 额外讨论和解释:针对复杂概念和初学者常遇到的问题,进行深入解析。 6. 大量示例:提供丰富的代码示例,所有源代码都可以在线获取,便于读者实践和学习。 本书保留了前几版的核心特色,即以实例教学,通过解释和展示语言特性来帮助读者掌握C++。作者的目标是创作一本清晰、全面、准确的教程,让读者在编写程序的过程中学习C++,同时也展示了如何有效地利用这门语言。 《Cpp Primer》第四版不仅适合C++初学者,也适合想要更新C++知识的老手,它全面覆盖了C++语言的各个方面,包括基础语法、类、模板、STL(Standard Template Library)等,同时引入了现代C++的特性,如智能指针、RAII(Resource Acquisition Is Initialization)、lambda表达式等,使读者能够跟上C++语言的发展步伐,提升编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依