基于图的图像分割算法python
时间: 2023-12-20 17:04:05 浏览: 63
图像分割是计算机视觉领域的一个重要任务,它的目标是将图像划分成多个区域,使得每个区域内的像素具有相似的特征。基于图的图像分割算法是一种常用的分割方法,它通过构建图来描述图像中的像素之间的关系,然后基于图上的最小割或最大流算法来实现分割。
下面是一个基于图的图像分割算法的Python实现:
```python
import numpy as np
import cv2
import networkx as nx
def build_graph(img):
height, width, channels = img.shape
graph = nx.DiGraph()
for i in range(height):
for j in range(width):
node_num = i * width + j
if j < width - 1:
weight = np.sum(np.abs(img[i, j] - img[i, j + 1]))
graph.add_edge(node_num, node_num + 1, weight=weight)
if i < height - 1:
weight = np.sum(np.abs(img[i, j] - img[i + 1, j]))
graph.add_edge(node_num, node_num + width, weight=weight)
if i < height - 1 and j < width - 1:
weight = np.sum(np.abs(img[i, j] - img[i + 1, j + 1]))
graph.add_edge(node_num, node_num + width + 1, weight=weight)
if i < height - 1 and j > 0:
weight = np.sum(np.abs(img[i, j] - img[i + 1, j - 1]))
graph.add_edge(node_num, node_num + width - 1, weight=weight)
return graph
def segment_image(img, k):
graph = build_graph(img)
height, width, channels = img.shape
nodes = graph.nodes()
edges = graph.edges()
num_nodes = len(nodes)
node_map = {}
for i, node in enumerate(nodes):
node_map[node] = i
weights = np.array([graph[u][v]['weight'] for u, v in edges])
max_weight = np.max(weights)
min_weight = np.min(weights)
normalized_weights = (weights - min_weight) / (max_weight - min_weight)
normalized_weights = k * normalized_weights
graph = nx.Graph()
graph.add_nodes_from(range(num_nodes))
for i, (u, v) in enumerate(edges):
weight = normalized_weights[i]
graph.add_edge(node_map[u], node_map[v], weight=weight)
segments = nx.algorithms.cut_normalized(graph)
groups = {}
for i, seg in enumerate(segments):
groups[i] = set([nodes[n] for n in seg])
output_img = np.zeros((height, width), dtype=np.uint8)
for i, group in groups.items():
for node in group:
i, j = divmod(node, width)
output_img[i, j] = i + j
return output_img
# 示例
img = cv2.imread('test.png')
segments = segment_image(img, 100)
cv2.imshow('Segmented Image', segments)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
在这个例子中,我们首先使用`build_graph`函数来构建一个图,其中图的节点表示图像中的每个像素,边表示相邻像素之间的关系。然后我们使用`segment_image`函数对图像进行分割,其中参数`k`表示对边权值的缩放因子。
最后,我们将分割结果显示出来。
阅读全文