五层全连接神经网络拟合函数y=x^2+2x-3的python代码

时间: 2023-09-20 20:05:42 浏览: 141
### 回答1: import numpy as np x = np.arange(-3,3,0.1) y = x**2*2*x - 3 import torch from torch.autograd import Variable w1 = Variable(torch.Tensor([1]), requires_grad=True) w2 = Variable(torch.Tensor([1]), requires_grad=True) w3 = Variable(torch.Tensor([1]), requires_grad=True) w4 = Variable(torch.Tensor([1]), requires_grad=True) w5 = Variable(torch.Tensor([1]), requires_grad=True) def forward(x): y_pred = w1*x**4 + w2*x**3 + w3*x**2 + w4*x + w5 return y_pred # Loss function def loss(y, y_pred): return torch.mean((y_pred - y)**2) # Optimizer optimizer = torch.optim.SGD([w1, w2, w3, w4, w5], lr=0.01) # Training for epoch in range(100): # Forward pass y_pred = forward(x) # Compute loss l = loss(y, y_pred) # Backward pass l.backward() # Update the parameters optimizer.step() # Zero the gradients optimizer.zero_grad() # Final prediction y_pred = forward(x) print("五层全连接神经网络拟合函数y=x^2 2x-3的Python代码如下:") print("import numpy as np") print("x = np.arange(-3,3,0.1)") print("y = x**2*2*x - 3") print("import torch") print("from torch.autograd import Variable") print("w1 = Variable(torch.Tensor([1]), requires_grad=True)") print("w2 = Variable(torch.Tensor([1]), requires_grad=True)") print("w3 = Variable(torch.Tensor([1]), requires_grad=True)") print("w4 = Variable(torch.Tensor([1]), requires_grad=True)") print("w5 = Variable(torch.Tensor([1]), requires_grad=True)") print("def forward(x):") print(" y_pred = w1*x**4 + w2*x**3 + w3*x**2 + w4*x + w5") print(" return y_pred") print("# Loss function") print("def loss(y, y_pred):") print(" return torch.mean((y_pred - y)**2)") print("# Optimizer") print("optimizer = torch.optim.SGD([w1, w2, w3, w4, w5], lr=0.01)") print("# Training") print("for epoch in range(100):") print(" # Forward pass") print(" y_pred = forward(x)") print(" # Compute loss") print(" l = loss(y, y_pred)") print(" # Backward pass") print(" l.backward()") print(" # Update the parameters") print(" optimizer.step()") print(" # Zero the gradients") print(" optimizer.zero_grad()") print("# Final prediction") print("y_pred = forward(x)") ### 回答2: import numpy as np import matplotlib.pyplot as plt # 定义激活函数 def activation(x): return 1 / (1 + np.exp(-x)) # 定义导数函数 def derivative_activation(x): return activation(x) * (1 - activation(x)) # 定义神经网络类 class NeuralNetwork: def __init__(self, layers): self.layers = layers self.weights = [np.random.random((layers[i], layers[i+1])) for i in range(len(layers)-1)] self.biases = [np.random.random(layers[i+1]) for i in range(len(layers)-1)] def forward_propagation(self, x): self.a = [x] self.z = [] for i in range(len(self.layers)-1): self.z.append(np.dot(self.a[-1], self.weights[i]) + self.biases[i]) self.a.append(activation(self.z[-1])) return self.a[-1] def back_propagation(self, x, y, learning_rate): delta = 2 * (self.a[-1] - y) * derivative_activation(self.z[-1]) nabla_w = [np.zeros((self.layers[i], self.layers[i+1])) for i in range(len(self.layers)-1)] nabla_b = [np.zeros(self.layers[i+1]) for i in range(len(self.layers)-1)] nabla_w[-1] = np.dot(self.a[-2].T, delta) nabla_b[-1] = delta for i in range(len(self.layers)-3, -1, -1): delta = np.dot(delta, self.weights[i+1].T) * derivative_activation(self.z[i]) nabla_w[i] = np.dot(self.a[i].T, delta) nabla_b[i] = delta for i in range(len(self.layers)-2, -1, -1): self.weights[i] -= learning_rate * nabla_w[i] self.biases[i] -= learning_rate * nabla_b[i] def train(self, x_train, y_train, epochs, learning_rate): for epoch in range(epochs): for x, y in zip(x_train, y_train): output = self.forward_propagation(x) self.back_propagation(x, y, learning_rate) def predict(self, x): return self.forward_propagation(x) # 准备训练数据 x_train = np.linspace(-10, 10, 100) y_train = np.square(x_train) + 2 * x_train - 3 # 创建神经网络并训练 nn = NeuralNetwork([1, 5, 5, 5, 5, 1]) nn.train(x_train, y_train, epochs=10000, learning_rate=0.001) # 准备测试数据 x_test = np.linspace(-10, 10, 100) y_test = np.square(x_test) + 2 * x_test - 3 # 使用神经网络进行预测 y_pred = np.zeros_like(x_test) for i, x in enumerate(x_test): y_pred[i] = nn.predict(x) # 绘制拟合曲线 plt.plot(x_train, y_train, 'bo', label='Training data') plt.plot(x_test, y_test, 'g-', label='True data') plt.plot(x_test, y_pred, 'r-', label='Predicted data') plt.legend() plt.show() ### 回答3: import torch import torch.nn as nn import numpy as np import matplotlib.pyplot as plt # 定义数据 x = np.linspace(-10, 10, 100) y = x**2 + 2*x - 3 # 将数据转化为张量 x_tensor = torch.from_numpy(x).float() y_tensor = torch.from_numpy(y).float() # 定义神经网络模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(1, 10) self.fc2 = nn.Linear(10, 20) self.fc3 = nn.Linear(20, 10) self.fc4 = nn.Linear(10, 1) def forward(self, x): x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = torch.relu(self.fc3(x)) x = self.fc4(x) return x # 初始化神经网络 model = Net() # 定义损失函数和优化器 criterion = nn.MSELoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.01) # 训练神经网络 for epoch in range(1000): # forward output = model(x_tensor.unsqueeze(1)) loss = criterion(output.squeeze(), y_tensor) # backward and optimize optimizer.zero_grad() loss.backward() optimizer.step() # 绘制拟合曲线 x_test = np.linspace(-10, 10, 100) x_test_tensor = torch.from_numpy(x_test).float() y_pred = model(x_test_tensor.unsqueeze(1)).detach().numpy().flatten() plt.plot(x, y, label='ground truth') plt.plot(x_test, y_pred, label='fitted curve') plt.legend() plt.show()
阅读全文

相关推荐

大家在看

recommend-type

pjsip开发指南

pjsip是一个开源的sip协议栈,这个文档主要对sip开发的框架进行说明
recommend-type

RTX 3.6 SDK 基于Windows实时操作系统

RTX 3.6 SDK
recommend-type

网络信息系统应急预案-网上银行业务持续性计划与应急预案

包含4份应急预案 网络信息系统应急预案.doc 信息系统应急预案.DOCX 信息系统(系统瘫痪)应急预案.doc 网上银行业务持续性计划与应急预案.doc
recommend-type

基于区间组合移动窗口法筛选近红外光谱信息

基于区间组合移动窗口法筛选近红外光谱信息
recommend-type

毕业设计&课设-MATLAB的光场工具箱.zip

matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随

最新推荐

recommend-type

使用 pytorch 创建神经网络拟合sin函数的实现

在`__init__`方法中,我们声明网络的层,这里包含四个全连接层(`nn.Linear`)和激活函数(ReLU)。`forward`函数定义了前向传播的过程,即输入数据通过网络的路径。 3. **实例化模型**:创建网络类的实例。 4. **...
recommend-type

Python实现的三层BP神经网络算法示例

【Python实现的三层BP神经网络算法】 BP神经网络(Backpropagation Neural Network)是一种广泛应用的监督学习算法,常用于分类和回归问题。它由输入层、隐藏层和输出层构成,其中隐藏层可以有多个。在三层BP神经...
recommend-type

Python实现的径向基(RBF)神经网络示例

2. RBF神经网络的结构与工作原理,包括输入层、隐藏层和输出层的交互。 3. 使用numpy进行矩阵运算和计算误差。 4. 利用h5py进行模型的存储和加载。 5. 最小二乘法或其他优化算法(如梯度下降)在调整网络权重中的...
recommend-type

Python通过TensorFlow卷积神经网络实现猫狗识别

在本文中,我们将探讨如何使用Python和TensorFlow构建一个卷积神经网络(CNN)来实现猫狗图像的识别。这是一个常见的计算机视觉任务,通常用于初学者熟悉深度学习和CNNs。我们将按照以下步骤进行: 1. **数据处理**...
recommend-type

Termux (Android 5.0+).apk.cab

Termux (Android 5.0+).apk.cab
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"