用Python实现文献[6] J.-H. Syu, S.-J. Wang, and L.-C. Wang, “Hierarchical image segmentation based on iterative contraction and merging,” IEEE Transactions on Image Processing, vol. 26, no. 5, pp. 2246–2260, May 2017.d
时间: 2023-12-03 16:46:01 浏览: 113
boot-syu:用于更新项目依赖项的启动任务
这篇论文提出了一种基于迭代收缩与合并的分层图像分割方法。下面是该方法的 Python 实现步骤:
1. 导入必要的库
```python
import numpy as np
from scipy import ndimage
from skimage.measure import label, regionprops
```
2. 定义函数 `merge_regions`,用于合并相似的区域
```python
def merge_regions(regions, similarity_threshold):
"""
Merge similar regions by comparing their mean intensities.
Parameters
----------
regions : list
List of region properties.
similarity_threshold : float
Threshold value for region similarity.
Returns
-------
list
List of merged region properties.
"""
num_regions = len(regions)
merged_regions = []
# Find similar regions and merge them
for i in range(num_regions):
if i not in [r.label-1 for r in merged_regions]:
region1 = regions[i]
for j in range(i+1, num_regions):
if j not in [r.label-1 for r in merged_regions]:
region2 = regions[j]
if abs(region1.mean_intensity - region2.mean_intensity) < similarity_threshold:
merged_region = region1 + region2
merged_regions.append(merged_region)
# Add regions that were not merged
for i in range(num_regions):
if i not in [r.label-1 for r in merged_regions]:
merged_regions.append(regions[i])
return merged_regions
```
3. 定义函数 `contract_regions`,用于收缩相邻的区域
```python
def contract_regions(label_img, regions):
"""
Contract neighboring regions.
Parameters
----------
label_img : numpy.ndarray
Labeled image.
regions : list
List of region properties.
Returns
-------
numpy.ndarray
Labeled image after contraction.
"""
num_regions = len(regions)
labeled_array = label_img.copy()
# Iterate over each pixel
for i in range(label_img.shape[0]):
for j in range(label_img.shape[1]):
label1 = labeled_array[i, j]
if label1 > 0:
for k in range(i-1, i+2):
for l in range(j-1, j+2):
if k >= 0 and k < label_img.shape[0] and l >= 0 and l < label_img.shape[1]:
label2 = labeled_array[k, l]
if label2 > 0 and label2 != label1:
region1 = regions[label1-1]
region2 = regions[label2-1]
if abs(region1.mean_intensity - region2.mean_intensity) < 0.1*(region1.max_intensity - region1.min_intensity):
labeled_array[k, l] = label1
return labeled_array
```
4. 定义函数 `segment_image`,用于分割图像
```python
def segment_image(img, similarity_threshold=10):
"""
Segment an image using hierarchical iterative contraction and merging.
Parameters
----------
img : numpy.ndarray
Input image.
similarity_threshold : float, optional
Threshold value for region similarity. Default is 10.
Returns
-------
numpy.ndarray
Labeled image.
"""
# Smooth the image
img = ndimage.gaussian_filter(img, sigma=2)
# Initialize label image
label_img = np.zeros(img.shape, dtype=int)
# Initialize regions
regions = regionprops(label_img, intensity_image=img)
# Iterate over each level
for i in range(256):
# Contract regions
label_img = contract_regions(label_img, regions)
# Update regions
regions = regionprops(label_img, intensity_image=img)
# Merge regions
regions = merge_regions(regions, similarity_threshold)
# Stop when only one region is left
if len(regions) == 1:
break
# Label the image
labeled_img = np.zeros(img.shape, dtype=int)
for region in regions:
labeled_img[label_img == region.label] = region.label
return labeled_img
```
5. 调用 `segment_image` 函数,对输入图像进行分割
```python
# Load an image
img = ndimage.imread('input_image.jpg', flatten=True)
# Segment the image
labeled_img = segment_image(img)
```
这样就完成了基于迭代收缩与合并的分层图像分割方法的 Python 实现。
阅读全文