GA for VRPTW
时间: 2023-12-08 14:39:44 浏览: 82
spring 异步编程样例
遗传算法(GA)是一种优化算法,可以用于解决车辆路径问题(VRP)和车辆路径问题与时间窗口(VRPTW)。下面是GA解决VRPTW的一般步骤:
1.初始化种群:随机生成一组初始解决方案,每个解决方案表示一组路径,其中每个路径都是从仓库出发并返回仓库的一系列客户访问。
2.适应度函数:为每个解决方案计算适应度函数,该函数度量解决方案的质量。在VRPTW中,适应度函数通常考虑路径的总成本,包括行驶距离、时间窗口违规和车辆数量等。
3.选择:选择一些适应度高的解决方案作为父代,用于产生下一代。
4.交叉:对父代进行交叉操作,生成一些新的解决方案。
5.变异:对新的解决方案进行变异操作,以增加种群的多样性。
6.重复步骤2-5,直到达到停止条件(例如达到最大迭代次数或找到满意的解决方案)。
下面是一个简单的Python代码示例,***```python
# 初始化种群
def init_population(pop_size, num_customers):
population = []
for i in range(pop_size):
solution = []
for j in range(num_customers):
# 随机分配每个客户到一个路径中
route = random.randint(0, num_vehicles - 1)
solution.append(route)
population.append(solution)
return population
# 计算适应度函数
def fitness(solution):
# 计算每个路径的成本
costs = []
for i in range(num_vehicles):
route = [j for j in range(num_customers) if solution[j] == i]
cost = calculate_cost(route)
costs.append(cost)
# 计算总成本
total_cost = sum(costs)
# 考虑惩罚项(例如时间窗口违规)
if is_feasible(solution):
return 1 / total_cost
else:
return 0
# 选择
def selection(population):
# 使用轮盘赌选择算法
fitness_values = [fitness(solution) for solution in population]
total_fitness = sum(fitness_values)
probabilities = [fitness_value / total_fitness for fitness_value in fitness_values]
selected = []
for i in range(len(population)):
selected.append(random.choices(population, probabilities)[0])
return selected
# 交叉
def crossover(parents):
# 使用顺序交叉算法
child = []
for i in range(num_customers):
if parents[0][i] == parents[1][i]:
child.append(parents[0][i])
else:
if random.random() < 0.5:
child.append(parents[0][i])
else:
child.append(parents[1][i])
return child
# 变异
def mutation(solution):
# 使用交换变异算法
i, j = random.sample(range(num_customers), 2)
solution[i], solution[j] = solution[j], solution[i]
return solution
# 主程序
pop_size = 100
num_vehicles = 5
num_customers = 20
population = init_population(pop_size, num_customers)
for i in range(100):
parents = random.sample(selection(population), 2)
child = crossover(parents)
if random.random() < 0.1:
child = mutation(child)
population.append(child)
best_solution = max(population, key=fitness)
print(best_solution)
```
阅读全文