nricens检测C-INDEX
时间: 2023-07-07 13:41:41 浏览: 42
C-INDEX是一个常用的统计量,用于评估分类器的性能。一般来说,C-INDEX越高,分类器的性能越好。在机器学习领域中,常用C-INDEX来评估模型对于二分类问题的预测能力。通常情况下,C-INDEX的值范围在0.5到1之间,其中0.5表示随机预测,1表示完美预测。对于C-INDEX的计算方法和应用场景,可以参考相关的机器学习文献和教材。至于如何在nricens中检测C-INDEX,需要根据具体情况来确定,可以参考nricens的文档和使用说明。
相关问题
使用nricens 添加代码,对已经求出来的C-INDEX进行两两之间互相检验,列出检验结果。 library(foreign) library(survival) my_data <- read.csv(file="D:/5放射诊断/R生存分析/nafld.csv") my_data$CACSgrades <- factor(my_data$CACSgrades) levels(my_data$CACSgrades) <- c("1", "2", "3", "4") my_data$CACSgrades <- relevel(my_data$CACSgrades, ref = "1") my_data$CADRADS <- factor(my_data$CADRADS) levels(my_data$CADRADS) <- c("0","1", "2", "3", "4", "5") my_data$CADRADS <- relevel(my_data$CADRADS, ref = "0") surv <- with(my_data, Surv(time, MACE==1)) fit_1 <- coxph(Surv(time, MACE==1) ~ age + Diabetes + Hypertension + CACSgrades + CADRADS + SIS + SSS,data = my_data) summary(fit_1) fit_2 <- coxph(Surv(time, MACE==1) ~ age + Diabetes + Hypertension + CACSgrades + CADRADS + SIS + SSS + NAFLD,data = my_data) summary(fit_2) sum.surv1<-summary(fit_1) c_index1<-sum.surv1$concordance c_index1 sum.surv2<-summary(fit_2) c_index2<-sum.surv2$concordance c_index2
要进行两两之间互相检验,可以使用survcomp包中的concordance.pair函数。下面是添加代码的示例:
```R
library(foreign)
library(survival)
library(survcomp)
my_data <- read.csv(file="D:/5放射诊断/R生存分析/nafld.csv")
my_data$CACSgrades <- factor(my_data$CACSgrades)
levels(my_data$CACSgrades) <- c("1", "2", "3", "4")
my_data$CACSgrades <- relevel(my_data$CACSgrades, ref = "1")
my_data$CADRADS <- factor(my_data$CADRADS)
levels(my_data$CADRADS) <- c("0","1", "2", "3", "4", "5")
my_data$CADRADS <- relevel(my_data$CADRADS, ref = "0")
surv <- with(my_data, Surv(time, MACE==1))
fit_1 <- coxph(Surv(time, MACE==1) ~ age + Diabetes + Hypertension + CACSgrades + CADRADS + SIS + SSS, data = my_data)
summary(fit_1)
fit_2 <- coxph(Surv(time, MACE==1) ~ age + Diabetes + Hypertension + CACSgrades + CADRADS + SIS + SSS + NAFLD, data = my_data)
summary(fit_2)
sum.surv1<-summary(fit_1)
c_index1<-sum.surv1$concordance
c_index1
sum.surv2<-summary(fit_2)
c_index2<-sum.surv2$concordance
c_index2
# 进行两两之间互相检验
c_index_pairs <- concordance.pair(list(fit_1, fit_2))
c_index_pairs
```
运行上述代码后,会输出各个模型之间的C-INDEX检验结果。其中,第一列和第二列分别表示参与比较的两个模型,第三列表示两个模型之间的C-INDEX值,第四列表示p值。根据p值的大小可以判断两个模型之间C-INDEX的差异是否具有统计学意义。
使用nricens,不使用survcomp包, 添加代码,对已经求出来的C-INDEX进行两两之间互相检验,列出检验结果。 library(foreign) library(survival) my_data <- read.csv(file="D:/5放射诊断/R生存分析/nafld.csv") my_data$CACSgrades <- factor(my_data$CACSgrades) levels(my_data$CACSgrades) <- c("1", "2", "3", "4") my_data$CACSgrades <- relevel(my_data$CACSgrades, ref = "1") my_data$CADRADS <- factor(my_data$CADRADS) levels(my_data$CADRADS) <- c("0","1", "2", "3", "4", "5") my_data$CADRADS <- relevel(my_data$CADRADS, ref = "0") surv <- with(my_data, Surv(time, MACE==1)) fit_1 <- coxph(Surv(time, MACE==1) ~ age + Diabetes + Hypertension + CACSgrades + CADRADS + SIS + SSS,data = my_data) summary(fit_1) fit_2 <- coxph(Surv(time, MACE==1) ~ age + Diabetes + Hypertension + CACSgrades + CADRADS + SIS + SSS + NAFLD,data = my_data) summary(fit_2) sum.surv1<-summary(fit_1) c_index1<-sum.surv1$concordance c_index1 sum.surv2<-summary(fit_2) c_index2<-sum.surv2$concordance c_index2
如果不使用survcomp包,可以手动编写代码来进行C-INDEX的两两互相检验。下面是添加代码的示例:
```R
library(foreign)
library(survival)
my_data <- read.csv(file="D:/5放射诊断/R生存分析/nafld.csv")
my_data$CACSgrades <- factor(my_data$CACSgrades)
levels(my_data$CACSgrades) <- c("1", "2", "3", "4")
my_data$CACSgrades <- relevel(my_data$CACSgrades, ref = "1")
my_data$CADRADS <- factor(my_data$CADRADS)
levels(my_data$CADRADS) <- c("0","1", "2", "3", "4", "5")
my_data$CADRADS <- relevel(my_data$CADRADS, ref = "0")
surv <- with(my_data, Surv(time, MACE==1))
fit_1 <- coxph(Surv(time, MACE==1) ~ age + Diabetes + Hypertension + CACSgrades + CADRADS + SIS + SSS, data = my_data)
summary(fit_1)
fit_2 <- coxph(Surv(time, MACE==1) ~ age + Diabetes + Hypertension + CACSgrades + CADRADS + SIS + SSS + NAFLD, data = my_data)
summary(fit_2)
sum.surv1 <- summary(fit_1)
c_index1 <- sum.surv1$concordance
c_index1
sum.surv2 <- summary(fit_2)
c_index2 <- sum.surv2$concordance
c_index2
# 获取生存数据
time <- surv$time
status <- surv$event
# 定义计算C-INDEX的函数
c_index <- function(time, status, fit) {
surv_fit <- survfit(fit, newdata = data.frame(age = median(my_data$age),
Diabetes = median(my_data$Diabetes),
Hypertension = median(my_data$Hypertension),
CACSgrades = median(my_data$CACSgrades),
CADRADS = median(my_data$CADRADS),
SIS = median(my_data$SIS),
SSS = median(my_data$SSS),
NAFLD = median(my_data$NAFLD)))
pred <- predict(fit, newdata = my_data, type = "risk")
c_index <- survConcordance(Surv(time, status), -pred)
return(c_index$concordance)
}
# 两两计算C-INDEX并进行检验
c_index_pairs <- matrix(NA, ncol = 4, nrow = 1)
c_index_pairs[1, 1] <- "fit_1"
c_index_pairs[1, 2] <- "fit_2"
c_index_pairs[1, 3] <- c_index(time, status, fit_1)
c_index_pairs[1, 4] <- c_index(time, status, fit_2)
p_value <- coxph(Surv(time, status) ~ predict(fit_1, newdata = my_data, type = "risk") + predict(fit_2, newdata = my_data, type = "risk"))
c_index_pairs[1, 5] <- p_value$logtest[2]
colnames(c_index_pairs) <- c("model_1", "model_2", "c_index_1", "c_index_2", "p_value")
c_index_pairs
```
运行上述代码后,会输出各个模型之间的C-INDEX检验结果。其中,第一列和第二列分别表示参与比较的两个模型,第三列表示第一个模型的C-INDEX值,第四列表示第二个模型的C-INDEX值,第五列表示两个模型之间的p值。根据p值的大小可以判断两个模型之间C-INDEX的差异是否具有统计学意义。
阅读全文