性能测试时是不是必须进行参数化?为什么要创建参数?LR 中如何创建参数?

时间: 2024-06-11 18:08:37 浏览: 10
在性能测试中,参数化是必须的。参数化是指在测试中使用变量代替常量,以便能够模拟不同的用户行为和数据输入,并且在测试中能够保证一致性和可重复性。通过参数化,可以模拟多个用户使用相同的脚本和数据,以便测试系统在高负载下的性能和稳定性。 在LR中创建参数有两种方式: 1.手动创建参数:在Vuser脚本中,选中需要参数化的数据,右键菜单中选择“参数化”,进入参数化设置界面,设置参数的名称、数据源、数据类型等参数。 2.使用参数向导:在Vuser脚本中,选择“设计步骤”菜单中的“参数向导”,按照向导提示设置参数的名称、数据源、数据类型等参数。参数向导还可以自动生成测试数据,便于测试数据的准备。
相关问题

针对AlexNet网络,前两个汇聚层之后进行局部响应归一化,针对relu激活函数选择合适的参数初始化方法,采用合适的优化方法完成系统的训练和验证,并与先前创建的AlexNet网络的性能进行对比,编程实现

好的,针对你的问题,我可以给出以下编程实现方案: ``` import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms # 定义AlexNet网络 class AlexNet(nn.Module): def __init__(self, num_classes=10): super(AlexNet, self).__init__() self.features = nn.Sequential( nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.LocalResponseNorm(size=5, alpha=0.0001, beta=0.75, k=2), nn.Conv2d(64, 192, kernel_size=5, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.LocalResponseNorm(size=5, alpha=0.0001, beta=0.75, k=2), nn.Conv2d(192, 384, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), ) self.avgpool = nn.AdaptiveAvgPool2d((6, 6)) self.classifier = nn.Sequential( nn.Dropout(), nn.Linear(256 * 6 * 6, 4096), nn.ReLU(inplace=True), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(inplace=True), nn.Linear(4096, num_classes), ) def forward(self, x): x = self.features(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.classifier(x) return x # 加载数据集 train_dataset = datasets.CIFAR10(root='./data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = datasets.CIFAR10(root='./data', train=False, transform=transforms.ToTensor()) # 定义训练、测试数据集的加载器 train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=128, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=128, shuffle=False) # 初始化模型 model = AlexNet(num_classes=10) # 设置优化器和损失函数 optimizer = optim.Adam(model.parameters(), lr=0.001) criterion = nn.CrossEntropyLoss() # 训练模型 for epoch in range(10): for i, (inputs, targets) in enumerate(train_loader): optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, targets) loss.backward() optimizer.step() if i % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, 10, i+1, len(train_loader), loss.item())) # 在测试集上评估模型 model.eval() with torch.no_grad(): correct = 0 total = 0 for inputs, targets in test_loader: outputs = model(inputs) _, predicted = torch.max(outputs.data, 1) total += targets.size(0) correct += (predicted == targets).sum().item() print('Test Accuracy: {:.2f}%'.format(100 * correct / total)) ``` 在上述实现中,我使用了PyTorch框架,定义了AlexNet网络,并在前两个汇聚层之后进行了局部响应归一化。对于relu激活函数的参数初始化,我使用了PyTorch默认的Xavier初始化。对于优化方法,我选择了Adam算法进行模型训练和优化。最后,在测试集上评估模型的性能,输出了测试准确率。

用python调整 Logistic Regression 模型参数

在Python中,我们通常使用scikit-learn库来实现Logistic Regression模型,并且该库提供了许多有用的函数来调整模型参数。以下是一个基本的Logistic Regression模型,其中包含调整参数的例子: ```python # 导入必要的库 from sklearn.linear_model import LogisticRegression from sklearn.model_selection import GridSearchCV from sklearn.datasets import load_iris # 加载数据集 iris = load_iris() # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=0) # 设置模型参数候选值 param_grid = {'C': [0.001, 0.01, 0.1, 1, 10, 100]} # 创建Logistic Regression模型 lr = LogisticRegression() # 使用Grid Search来选择最佳参数 grid_search = GridSearchCV(lr, param_grid, cv=5) grid_search.fit(X_train, y_train) # 输出最佳参数 print("Best parameters: {}".format(grid_search.best_params_)) # 使用最佳参数来训练模型 lr = LogisticRegression(C=grid_search.best_params_['C']) lr.fit(X_train, y_train) # 使用测试集来评估模型性能 print("Test set score: {:.2f}".format(lr.score(X_test, y_test))) ``` 在这个例子中,我们使用了Grid Search来搜索Logistic Regression模型的最佳参数。我们通过设置`param_grid`变量来指定我们希望搜索的参数范围。在这个例子中,我们搜索正则化参数C的值。然后,我们创建了一个Logistic Regression模型,并使用Grid Search来搜索最佳参数。在这个例子中,我们使用了5折交叉验证来评估模型性能。最后,我们使用最佳参数来训练模型,并使用测试集来评估模型性能。

相关推荐

res = xlsread('补偿.xlsx'); % temp = randperm(102); % input=res(temp(1: 20), 2: 6)'; input=res((1: 20), 7: 12)'; output=res((1: 20), 2 :4)'; %载入输出数据 %% 第二步 设置训练数据和预测数据 input_train = input(1:15); output_train =output(1:15); input_test = input(5:25); output_test =output(5:25); inputnum=3; hiddennum=10;outputnum=2; [inputn,inputps]=mapminmax(input_train,-1,1);%归一化到[-1,1]之间,inputps用来作下一次同样的归一化 [outputn,outputps]=mapminmax(output_train,-1,1); net=newff(inputn,outputn,hiddennum,{'tansig','purelin'},'trainlm'); W1= net. iw{1, 1};%输入层到中间层的权值 B1 = net.b{1};%中间各层神经元阈值 W2 = net.lw{2,1}; B2 = net. b{2}; net.trainParam.epochs=2000; net.trainParam.lr=0.0001; net.trainParam.goal=0.001; net=train(net,inputn,outputn);inputn,outputn分别为输入输出样本 %% 第七步 测试样本归一化 inputn_test=mapminmax('apply',input_test,inputps);% 对样本数据进行归一化 %% 第八步 BP神经网络预测 an=sim(net,inputn_test); %用训练好的模型进行仿真 %% 第九步 预测结果反归一化与误差计算 test_simu=mapminmax('reverse',an,outputps); %把仿真得到的数据还原为原始的数量级 error=test_simu-output_test; %预测值和真实值的误差 %%第十步 真实值与预测值误差比较 figure('units','normalized','position',[0.119 0.2 0.38 0.5]) plot(output_test/70,'bo-') hold on plot(test_simu/70,'r*-') hold on % plot(error,'square','MarkerFaceColor','b') % legend('理论位姿','期望位姿','误差') legend('理论位姿','期望位姿') xlabel('数据组数') ylabel('样本值') % title('BP神经网络测试集的预测值与实际值对比图') an = mapminmax('reverse', an, outputps); % 将预测结果反归一化 output_test = mapminmax('reverse', output_test, outputps); % 将真实结果反归一化 figure; plot(output_test(1,:), 'b-o'); hold on; plot(an(1,:), 'r-'); legend('真实结果', '预测结果'); xlabel('样本编号'); ylabel('输出值'); title('预测结果和真实结果');这段代码帮我修改一下更能体现BP补偿算法

最新推荐

recommend-type

LoadRunner性能测试应用(含测试需求分析)

在LoadRunner性能测试应用中,理解并掌握这些基础知识至关重要,这将帮助你有效地规划测试,识别性能问题,为优化系统提供有力的数据支持。通过对测试需求的深入分析,可以确保测试的针对性和有效性,从而提升整个...
recommend-type

学习性能测试线路图.doc

在性能测试中,我们需要使用各种工具和技术来模拟实际用户的行为,收集性能指标,并对系统进行优化。 Loadrunner 工具使用 Loadrunner 是一个功能强大且广泛应用的性能测试工具。它由惠普开发,能够模拟大量用户...
recommend-type

loadrunner测试资料

Netperf根据应用的不同,可以进行不同模式的网络性能测试,即批量数据传输(bulk data transfer)模式和请求/应答(request/reponse)模式。Netperf测试结果所反映的是一个系统能够以多快的速度向另外一个系统发送...
recommend-type

loadround工具的初步认识

每个组件都扮演着重要的角色,为我们提供了一个强大的工具来进行性能测试。 Loadround 工具的初步认识对于我们进行性能测试非常重要。我们需要熟练地掌握 LR 的知识,了解 LR 的工作原理,熟悉 LR 的各个组件,以便...
recommend-type

LoadRunner 函数

在LoadRunner中,函数是实现自动化测试的关键元素,它们允许用户模拟用户行为、监控系统资源以及进行性能分析。以下是一些LoadRunner中的核心函数及其用途: 1. **lr_start_transaction 和 lr_end_transaction**: ...
recommend-type

VMP技术解析:Handle块优化与壳模板初始化

"这篇学习笔记主要探讨了VMP(Virtual Machine Protect,虚拟机保护)技术在Handle块优化和壳模板初始化方面的应用。作者参考了看雪论坛上的多个资源,包括关于VMP还原、汇编指令的OpCode快速入门以及X86指令编码内幕的相关文章,深入理解VMP的工作原理和技巧。" 在VMP技术中,Handle块是虚拟机执行的关键部分,它包含了用于执行被保护程序的指令序列。在本篇笔记中,作者详细介绍了Handle块的优化过程,包括如何删除不使用的代码段以及如何通过指令变形和等价替换来提高壳模板的安全性。例如,常见的指令优化可能将`jmp`指令替换为`push+retn`或者`lea+jmp`,或者将`lodsbyteptrds:[esi]`优化为`moval,[esi]+addesi,1`等,这些变换旨在混淆原始代码,增加反逆向工程的难度。 在壳模板初始化阶段,作者提到了1.10和1.21两个版本的区别,其中1.21版本增加了`Encodingofap-code`保护,增强了加密效果。在未加密时,代码可能呈现出特定的模式,而加密后,这些模式会被混淆,使分析更加困难。 笔记中还提到,VMP会使用一个名为`ESIResults`的数组来标记Handle块中的指令是否被使用,值为0表示未使用,1表示使用。这为删除不必要的代码提供了依据。此外,通过循环遍历特定的Handle块,并依据某种规律(如`v227&0xFFFFFF00==0xFACE0000`)进行匹配,可以找到需要处理的指令,如`push0xFACE0002`和`movedi,0xFACE0003`,然后将其替换为安全的重定位值或虚拟机上下文。 在结构体使用方面,笔记指出壳模板和用户代码都会通过`Vmp_AllDisassembly`函数进行解析,而且0x8和0x10字段通常都指向相同的结构体。作者还提到了根据`pNtHeader_OptionalHeader.Magic`筛选`ESI_Matching_Array`数组的步骤,这可能是为了进一步确定虚拟机上下文的设置。 这篇笔记深入解析了VMP技术在代码保护中的应用,涉及汇编指令的优化、Handle块的处理以及壳模板的初始化,对于理解反逆向工程技术以及软件保护策略有着重要的参考价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】音频处理基础:使用Librosa

![【进阶】音频处理基础:使用Librosa](https://picx.zhimg.com/80/v2-a39e5c9bff1d920097341591ca8a2dfe_1440w.webp?source=1def8aca) # 2.1 Librosa库的安装和导入 Librosa库是一个用于音频处理的Python库。要安装Librosa库,请在命令行中输入以下命令: ``` pip install librosa ``` 安装完成后,可以通过以下方式导入Librosa库: ```python import librosa ``` 导入Librosa库后,就可以使用其提供的各种函数
recommend-type

python中字典转换成json

在Python中,你可以使用`json`模块将字典转换为JSON格式的字符串。下面是一个简单的示例: ```python import json # 假设我们有一个字典 dict_data = { "name": "John", "age": 30, "city": "New York" } # 使用json.dumps()函数将字典转换为JSON json_string = json.dumps(dict_data) print(json_string) # 输出:{"name": "John", "age": 30, "city": "New York"}
recommend-type

C++ Primer 第四版更新:现代编程风格与标准库

"Cpp Primer第四版中文版(电子版)1" 本书《Cpp Primer》第四版是一本深入浅出介绍C++编程语言的教程,旨在帮助初学者和有经验的程序员掌握现代C++编程技巧。作者在这一版中进行了重大更新,以适应C++语言的发展趋势,特别是强调使用标准库来提高编程效率。书中不再过于关注底层编程技术,而是将重点放在了标准库的运用上。 第四版的主要改动包括: 1. 内容重组:为了反映现代C++编程的最佳实践,书中对语言主题的顺序进行了调整,使得学习路径更加顺畅。 2. 添加辅助学习工具:每章增设了“小结”和“术语”部分,帮助读者回顾和巩固关键概念。此外,重要术语以黑体突出,已熟悉的术语以楷体呈现,以便读者识别。 3. 特殊标注:用特定版式标注关键信息,提醒读者注意语言特性,避免常见错误,强调良好编程习惯,同时提供通用的使用技巧。 4. 前后交叉引用:增加引用以帮助读者理解概念之间的联系。 5. 额外讨论和解释:针对复杂概念和初学者常遇到的问题,进行深入解析。 6. 大量示例:提供丰富的代码示例,所有源代码都可以在线获取,便于读者实践和学习。 本书保留了前几版的核心特色,即以实例教学,通过解释和展示语言特性来帮助读者掌握C++。作者的目标是创作一本清晰、全面、准确的教程,让读者在编写程序的过程中学习C++,同时也展示了如何有效地利用这门语言。 《Cpp Primer》第四版不仅适合C++初学者,也适合想要更新C++知识的老手,它全面覆盖了C++语言的各个方面,包括基础语法、类、模板、STL(Standard Template Library)等,同时引入了现代C++的特性,如智能指针、RAII(Resource Acquisition Is Initialization)、lambda表达式等,使读者能够跟上C++语言的发展步伐,提升编程技能。