模拟退火算法和遗传算法结合的java代码示例
时间: 2023-12-22 14:39:56 浏览: 122
下面是一个简单的Java代码示例,演示了如何结合模拟退火算法和遗传算法来解决TSP问题:
```java
import java.util.Random;
public class TSPSolver {
private int[][] distanceMatrix; // 距离矩阵
private int numCities; // 城市数量
private int[] bestSolution; // 最优解
private double bestFitness; // 最优解的适应度
public TSPSolver(int[][] distanceMatrix) {
this.distanceMatrix = distanceMatrix;
this.numCities = distanceMatrix.length;
this.bestSolution = new int[numCities];
this.bestFitness = Double.MAX_VALUE;
}
public void solve(int numIterations, double initialTemperature, double coolingRate) {
// 初始化遗传算法参数
int populationSize = 100;
double crossoverRate = 0.8;
double mutationRate = 0.2;
// 初始化种群
int[][] population = generateInitialPopulation(populationSize);
// 进行模拟退火与遗传算法的迭代优化
Random random = new Random();
double temperature = initialTemperature;
for (int iteration = 0; iteration < numIterations; iteration++) {
// 模拟退火
for (int i = 0; i < populationSize; i++) {
int[] solution = population[i];
double fitness = evaluateFitness(solution);
for (int j = 0; j < numCities; j++) {
int randomIndex = random.nextInt(numCities);
int temp = solution[j];
solution[j] = solution[randomIndex];
solution[randomIndex] = temp;
double newFitness = evaluateFitness(solution);
double delta = newFitness - fitness;
if (delta < 0 || random.nextDouble() < Math.exp(-delta / temperature)) {
fitness = newFitness;
} else {
temp = solution[j];
solution[j] = solution[randomIndex];
solution[randomIndex] = temp;
}
}
if (fitness < bestFitness) {
bestFitness = fitness;
System.arraycopy(solution, 0, bestSolution, 0, numCities);
}
}
// 遗传算法
int[][] newPopulation = new int[populationSize][numCities];
for (int i = 0; i < populationSize; i++) {
int[] parent1 = selectParent(population);
int[] parent2 = selectParent(population);
int[] child = crossover(parent1, parent2, crossoverRate);
child = mutate(child, mutationRate);
newPopulation[i] = child;
}
population = newPopulation;
temperature *= coolingRate;
}
}
private int[][] generateInitialPopulation(int populationSize) {
int[][] population = new int[populationSize][numCities];
for (int i = 0; i < populationSize; i++) {
for (int j = 0; j < numCities; j++) {
population[i][j] = j;
}
// 随机打乱顺序
shuffleArray(population[i]);
}
return population;
}
private void shuffleArray(int[] array) {
Random random = new Random();
for (int i = array.length - 1; i > 0; i--) {
int index = random.nextInt(i + 1);
int temp = array[index];
array[index] = array[i];
array[i] = temp;
}
}
private double evaluateFitness(int[] solution) {
double fitness = 0;
for (int i = 0; i < numCities - 1; i++) {
int city1 = solution[i];
int city2 = solution[i + 1];
fitness += distanceMatrix[city1][city2];
}
fitness += distanceMatrix[solution[numCities - 1]][solution[0]]; // 回到起始城市的距离
return fitness;
}
private int[] selectParent(int[][] population) {
Random random = new Random();
int parentIndex = random.nextInt(population.length);
return population[parentIndex];
}
private int[] crossover(int[] parent1, int[] parent2, double crossoverRate) {
Random random = new Random();
int[] child = new int[numCities];
if (random.nextDouble() < crossoverRate) {
int startPos = random.nextInt(numCities);
int endPos = random.nextInt(numCities);
for (int i = 0; i < numCities; i++) {
if (startPos < endPos && i > startPos && i < endPos) {
child[i] = parent1[i];
} else if (startPos > endPos && !(i < startPos && i > endPos)) {
child[i] = parent1[i];
}
}
for (int i = 0; i < numCities; i++) {
if (!containsValue(child, parent2[i])) {
for (int j = 0; j < numCities; j++) {
if (child[j] == 0) {
child[j] = parent2[i];
break;
}
}
}
}
} else {
System.arraycopy(parent1, 0, child, 0, numCities);
}
return child;
}
private int[] mutate(int[] solution, double mutationRate) {
Random random = new Random();
if (random.nextDouble() < mutationRate) {
int pos1 = random.nextInt(numCities);
int pos2 = random.nextInt(numCities);
int temp = solution[pos1];
solution[pos1] = solution[pos2];
solution[pos2] = temp;
}
return solution;
}
public int[] getBestSolution() {
return bestSolution;
}
public double getBestFitness() {
return bestFitness;
}
}
```
这段代码实现了一个简单的TSP问题求解器,结合了模拟退火算法和遗传算法。它首先生成一个初始种群,然后进行模拟退火和遗传算法的迭代优化。在每次迭代中,使用模拟退火对种群中的每个个体进行优化,然后使用遗传算法生成新的种群。最终得到的最优解存储在`bestSolution`数组中,最优解的适应度存储在`bestFitness`变量中。
请注意,这只是一个简单的示例代码,实际应用中可能需要根据具体问题进行修改和优化。
阅读全文