opencv实现人脸识别pca
时间: 2023-11-28 17:46:11 浏览: 119
pca_pca_DEMO_
以下是使用OpenCV实现人脸识别PCA的步骤:
1.导入必要的库和模块
```python
import cv2
import numpy as np
from sklearn.decomposition import PCA
```
2.加载数据集并进行预处理
```python
# 加载数据集
data = np.load('data.npy')
labels = np.load('labels.npy')
# 将数据集转换为二维数组
data = data.reshape((data.shape[0], -1))
# 将数据集中的每个样本减去均值
mean = np.mean(data, axis=0)
data -= mean
```
3.使用PCA进行降维
```python
# 创建PCA对象并拟合数据
pca = PCA(n_components=100)
pca.fit(data)
# 将数据集降维
data_pca = pca.transform(data)
```
4.训练分类器
```python
# 将数据集分为训练集和测试集
train_data = data_pca[:800]
train_labels = labels[:800]
test_data = data_pca[800:]
test_labels = labels[800:]
# 创建分类器并训练
knn = cv2.ml.KNearest_create()
knn.train(train_data, cv2.ml.ROW_SAMPLE, train_labels)
```
5.测试分类器
```python
# 对测试集进行预测
ret, result, neighbours, dist = knn.findNearest(test_data, k=5)
# 计算准确率
matches = result == test_labels.reshape((-1, 1))
correct = np.count_nonzero(matches)
accuracy = correct / test_labels.size
print('Accuracy:', accuracy)
```
阅读全文