请编写一段代码,用深度学习的方式能够实现用RNN进行中文短句的情感识别
时间: 2024-03-02 15:52:34 浏览: 62
基于R语言与python的中文情感分析设计与实现
5星 · 资源好评率100%
好的,以下是一个简单的中文短句情感分类的RNN模型示例,使用了LSTM作为循环体。
```python
import numpy as np
import tensorflow as tf
from tensorflow.keras.layers import Embedding, LSTM, Dense
# 加载数据
with open('sentiment_dataset.txt', 'r', encoding='utf-8') as f:
data = f.read()
sentences = data.split('\n')
# 构建词表
vocab = set()
for sentence in sentences:
words = sentence.strip().split(' ')
vocab.update(words)
vocab = sorted(vocab)
vocab_size = len(vocab)
word2idx = {w: i for i, w in enumerate(vocab)}
idx2word = {i: w for i, w in enumerate(vocab)}
# 构建输入输出数据
max_len = 20
X = np.zeros((len(sentences), max_len))
Y = np.zeros((len(sentences), 2))
for i, sentence in enumerate(sentences):
words = sentence.strip().split(' ')
for j, word in enumerate(words):
if j >= max_len:
break
X[i, j] = word2idx[word]
label = int(words[-1])
Y[i, label] = 1
# 构建模型
embedding_size = 32
hidden_size = 64
model = tf.keras.Sequential([
Embedding(vocab_size, embedding_size, input_length=max_len),
LSTM(hidden_size),
Dense(2, activation='softmax')
])
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()
# 训练模型
batch_size = 128
epochs = 10
model.fit(X, Y, batch_size=batch_size, epochs=epochs, validation_split=0.1)
# 测试模型
test_sentence = '这个电影真的太好看了'
test_X = np.zeros((1, max_len))
words = test_sentence.strip().split(' ')
for j, word in enumerate(words):
if j >= max_len:
break
test_X[0, j] = word2idx.get(word, 0)
pred = model.predict(test_X)[0]
print('Positive' if pred[1] > 0.5 else 'Negative')
```
以上代码仅供参考,具体的实现方式可以根据实际情况进行调整和优化。
阅读全文