详细解释这份代码生成的图的横坐标和纵坐标之间的关系% 输入电网拓扑信息和负载数据 % 节点数量 n = 4; % 线路阻抗矩阵 Z = [0.1+0.2i, 0.2+0.3i, 0.3+0.4i, 0.1+0.1i; 0.2+0.3i, 0.3+0.4i, 0.1+0.2i, 0.2+0.2i; 0.3+0.4i, 0.1+0.2i, 0.2+0.3i, 0.1+0.3i; 0.1+0.1i, 0.2+0.2i, 0.1+0.3i, 0.3+0.4i]; % 负载有功功率 P_load = [1.0, 1.5, 1.2, 1.8]; % 负载无功功率 Q_load = [0.5, 0.8, 1.0, 0.6]; % 定义基准电压值和电压相角 V_base = 1.0; theta_base = 0; % 将负载功率转换为复功率 S_load = P_load + 1i*Q_load; % 计算节点导纳矩阵 Y = inv(Z); % 构建节点导纳矩阵 Ybus = zeros(n, n); for i = 1:n for j = 1:n if i == j % 对角线元素为节点导纳之和 Ybus(i,j) = sum(Y(i,:)); else % 非对角线元素为节点导纳的相反数 Ybus(i,j) = -Y(i,j); end end end % 求解节点电压幅值和相角 V = inv(Ybus) * S_load'; theta = angle(V); % 计算节点电压幅值 V_abs = abs(V); % 绘制节点电压幅值分布图 figure; bar(V_abs); title('节点电压幅值分布图'); xlabel('节点编号'); ylabel('电压幅值真值 (pu)');

时间: 2024-04-17 13:23:43 浏览: 182
这段代码生成的图的横坐标为节点编号,纵坐标为节点电压幅值真值(以pu为单位)。下面对代码进行详细解释: 1. `n = 4;`:定义了节点数量为 4。 2. `Z = [0.1+0.2i, 0.2+0.3i, 0.3+0.4i, 0.1+0.1i; ...]`:定义了线路阻抗矩阵 Z,其中每个元素表示节点之间的阻抗。 3. `P_load = [1.0, 1.5, 1.2, 1.8];` 和 `Q_load = [0.5, 0.8, 1.0, 0.6];`:定义了负载的有功功率和无功功率。 4. `V_base = 1.0;` 和 `theta_base = 0;`:定义了基准电压值和电压相角。 5. `S_load = P_load + 1i*Q_load;`:将负载功率转换为复功率。 6. `Y = inv(Z);`:计算节点导纳矩阵 Y,通过取线路阻抗矩阵的逆来计算。 7. `Ybus = zeros(n, n);`:初始化节点导纳矩阵 Ybus。 8. `for i = 1:n` 和 `for j = 1:n`:循环遍历节点导纳矩阵的每个元素。 9. `if i == j`:判断是否为对角线元素。 10. `Ybus(i,j) = sum(Y(i,:));`:对角线元素为节点导纳之和,计算每个节点的导纳之和。 11. `else`:非对角线元素为节点导纳的相反数。 12. `Ybus(i,j) = -Y(i,j);`:计算非对角线元素,即节点导纳的相反数。 13. `V = inv(Ybus) * S_load';`:求解节点电压幅值和相角,通过将节点导纳矩阵的逆与复功率向量相乘得到节点电压向量。 14. `theta = angle(V);`:计算节点电压的相角。 15. `V_abs = abs(V);`:计算节点电压的幅值。 16. `figure;`:创建一个新的图形窗口。 17. `bar(V_abs);`:绘制条形图,横轴为节点编号,纵轴为节点电压幅值真值。 18. `title('节点电压幅值分布图');`:设置图形的标题。 19. `xlabel('节点编号'); ylabel('电压幅值真值 (pu)');`:设置横轴和纵轴的标签。 通过绘制节点电压幅值分布图,我们可以直观地查看每个节点的电压幅值真值,以评估电网的稳定性和电压水平。图中的横轴表示节点编号,纵轴表示节点电压幅值真值(以pu为单位)。
阅读全文

相关推荐

最新推荐

recommend-type

python_matplotlib改变横坐标和纵坐标上的刻度(ticks)方式

在Python的可视化库matplotlib中,绘制二维图形时,我们经常需要自定义横坐标(x-axis)和纵坐标(y-axis)的刻度(ticks),以提高图表的可读性和美观性。`xticks()`和`yticks()`是matplotlib提供的重要函数,用于...
recommend-type

Qt图形图像开发之曲线图表模块QChart库坐标轴和数据不对应、密集的散点图无法显示问题解决方法

Qt图形图像开发之曲线图表模块QChart库坐标轴和数据不对应、密集的散点图无法显示问题解决方法 在Qt图形图像开发中,QChart库是一个非常重要的组件,用于绘制图表和图形。但是,在使用QChart库时,经常会遇到一些...
recommend-type

利用python和百度地图API实现数据地图标注的方法

在本教程中,我们将探讨如何使用Python编程语言和百度地图API来实现数据地图标注。首先,我们需要理解Python在处理地理信息时的角色,以及百度地图API的功能。百度地图API提供了丰富的地图服务,包括地理位置编码...
recommend-type

python-opencv获取二值图像轮廓及中心点坐标的代码

本文将详细介绍如何使用OpenCV获取二值图像的轮廓以及这些轮廓的中心点坐标。 首先,我们要加载二值图像。二值图像是一种黑白图像,通常由0(背景)和255(前景)两个值组成。在Python中,我们可以使用`cv2.imread...
recommend-type

python实现根据给定坐标点生成多边形mask的例子

当处理数据集时,我们有时会遇到只有顶点坐标的mask信息,这时就需要根据这些坐标来构建二值化的mask图像。本篇文章将详细介绍如何使用Python和OpenCV库来实现这一功能。 首先,你需要导入必要的库,包括`numpy`...
recommend-type

Python中快速友好的MessagePack序列化库msgspec

资源摘要信息:"msgspec是一个针对Python语言的高效且用户友好的MessagePack序列化库。MessagePack是一种快速的二进制序列化格式,它旨在将结构化数据序列化成二进制格式,这样可以比JSON等文本格式更快且更小。msgspec库充分利用了Python的类型提示(type hints),它支持直接从Python类定义中生成序列化和反序列化的模式。对于开发者来说,这意味着使用msgspec时,可以减少手动编码序列化逻辑的工作量,同时保持代码的清晰和易于维护。 msgspec支持Python 3.8及以上版本,能够处理Python原生类型(如int、float、str和bool)以及更复杂的数据结构,如字典、列表、元组和用户定义的类。它还能处理可选字段和默认值,这在很多场景中都非常有用,尤其是当消息格式可能会随着时间发生变化时。 在msgspec中,开发者可以通过定义类来描述数据结构,并通过类继承自`msgspec.Struct`来实现。这样,类的属性就可以直接映射到消息的字段。在序列化时,对象会被转换为MessagePack格式的字节序列;在反序列化时,字节序列可以被转换回原始对象。除了基本的序列化和反序列化,msgspec还支持运行时消息验证,即可以在反序列化时检查消息是否符合预定义的模式。 msgspec的另一个重要特性是它能够处理空集合。例如,上面的例子中`User`类有一个名为`groups`的属性,它的默认值是一个空列表。这种能力意味着开发者不需要为集合中的每个字段编写额外的逻辑,以处理集合为空的情况。 msgspec的使用非常简单直观。例如,创建一个`User`对象并序列化它的代码片段显示了如何定义一个用户类,实例化该类,并将实例序列化为MessagePack格式。这种简洁性是msgspec库的一个主要优势,它减少了代码的复杂性,同时提供了高性能的序列化能力。 msgspec的设计哲学强调了性能和易用性的平衡。它利用了Python的类型提示来简化模式定义和验证的复杂性,同时提供了优化的内部实现来确保快速的序列化和反序列化过程。这种设计使得msgspec非常适合于那些需要高效、类型安全的消息处理的场景,比如网络通信、数据存储以及服务之间的轻量级消息传递。 总的来说,msgspec为Python开发者提供了一个强大的工具集,用于处理高性能的序列化和反序列化任务,特别是当涉及到复杂的对象和结构时。通过利用类型提示和用户定义的模式,msgspec能够简化代码并提高开发效率,同时通过运行时验证确保了数据的正确性。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32 HAL库函数手册精读:最佳实践与案例分析

![STM32 HAL库函数手册精读:最佳实践与案例分析](https://khuenguyencreator.com/wp-content/uploads/2020/07/bai11.jpg) 参考资源链接:[STM32CubeMX与STM32HAL库开发者指南](https://wenku.csdn.net/doc/6401ab9dcce7214c316e8df8?spm=1055.2635.3001.10343) # 1. STM32与HAL库概述 ## 1.1 STM32与HAL库的初识 STM32是一系列广泛使用的ARM Cortex-M微控制器,以其高性能、低功耗、丰富的外设接
recommend-type

如何利用FineReport提供的预览模式来优化报表设计,并确保最终用户获得最佳的交互体验?

针对FineReport预览模式的应用,这本《2020 FCRA报表工程师考试题库与答案详解》详细解读了不同预览模式的使用方法和场景,对于优化报表设计尤为关键。首先,设计报表时,建议利用FineReport的分页预览模式来检查报表的布局和排版是否准确,因为分页预览可以模拟报表在打印时的页面效果。其次,通过填报预览模式,可以帮助开发者验证用户交互和数据收集的准确性,这对于填报类型报表尤为重要。数据分析预览模式则适合于数据可视化报表,可以在这个模式下调整数据展示效果和交互设计,确保数据的易读性和分析的准确性。表单预览模式则更多关注于表单的逻辑和用户体验,可以用于检查表单的流程是否合理,以及数据录入
recommend-type

大学生社团管理系统设计与实现

资源摘要信息:"基于ssm+vue的大学生社团管理系统.zip" 该系统是基于Java语言开发的,使用了ssm框架和vue前端框架,主要面向大学生社团进行管理和运营,具备了丰富的功能和良好的用户体验。 首先,ssm框架是Spring、SpringMVC和MyBatis三个框架的整合,其中Spring是一个全面的企业级框架,可以处理企业的业务逻辑,实现对象的依赖注入和事务管理。SpringMVC是基于Servlet API的MVC框架,可以分离视图和模型,简化Web开发。MyBatis是一个支持定制化SQL、存储过程以及高级映射的持久层框架。 SpringBoot是一种全新的构建和部署应用程序的方式,通过使用SpringBoot,可以简化Spring应用的初始搭建以及开发过程。它使用了特定的方式来进行配置,从而使开发人员不再需要定义样板化的配置。 Vue.js是一个用于创建用户界面的渐进式JavaScript框架,它的核心库只关注视图层,易于上手,同时它的生态系统也十分丰富,提供了大量的工具和库。 系统主要功能包括社团信息管理、社团活动管理、社团成员管理、社团财务管理等。社团信息管理可以查看和编辑社团的基本信息,如社团名称、社团简介等;社团活动管理可以查看和编辑社团的活动信息,如活动时间、活动地点等;社团成员管理可以查看和编辑社团成员的信息,如成员姓名、成员角色等;社团财务管理可以查看和编辑社团的财务信息,如收入、支出等。 此外,该系统还可以通过微信小程序进行访问,微信小程序是一种不需要下载安装即可使用的应用,它实现了应用“触手可及”的梦想,用户扫一扫或者搜一下即可打开应用。同时,它也实现了应用“用完即走”的理念,用户不用关心是否安装太多应用的问题。应用将无处不在,随时可用,但又无需安装卸载。 总的来说,基于ssm+vue的大学生社团管理系统是一款功能丰富、操作简便、使用方便的社团管理工具,非常适合大学生社团的日常管理和运营。