cannot assign 'str' object to buffer 'weight' (torch Tensor or None required)
时间: 2023-12-28 10:06:14 浏览: 280
This error message suggests that you are trying to assign a string object to a buffer called 'weight', but the buffer expects a torch Tensor or None object instead.
To fix this error, you need to make sure that the value you are assigning to the 'weight' buffer is a tensor or None object. You can do this by converting the string object to a tensor using the appropriate method in the torch library. For example, you can use the `torch.tensor()` method to create a tensor from a list or a numpy array.
Alternatively, you can initialize the 'weight' buffer with None and assign it a tensor object later in your code when it is available.
相关问题
net[0].weight = torch.tensor([[3.0, 4.0]])报cannot assign 'torch.FloatTensor' as parameter 'weight' (torch.nn.Parameter or None expected)
这个错误提示表明,`net[0].weight`不是一个`torch.nn.Parameter`对象,因此无法通过直接赋值的方式修改它的值。要解决这个问题,你可以将`net[0].weight`转换为`torch.nn.Parameter`对象,然后再进行赋值操作。具体的代码如下:
```
import torch
import torch.nn as nn
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(2, 1)
def forward(self, x):
x = self.fc1(x)
return x
# 创建模型
net = Net()
# 将net[0].weight转换为torch.nn.Parameter对象
net[0].weight = nn.Parameter(torch.tensor([[1.0, 2.0]]))
# 打印模型
print(net)
```
运行上述代码,输出的模型参数应该为:
```
Net(
(fc1): Linear(in_features=2, out_features=1, bias=True)
)
```
阅读全文