基于BP神经网络的人脸识别代码
时间: 2023-10-30 14:05:02 浏览: 99
FaceRecognitionByBPneuralnetwork_人脸识别_神经网络人脸_
以下是基于BP神经网络的人脸识别代码:
```
import numpy as np
import cv2
import os
import random
# 加载训练数据
def load_data(data_folder):
folders = os.listdir(data_folder)
X = []
y = []
for folder in folders:
files = os.listdir(os.path.join(data_folder, folder))
for file in files:
img = cv2.imread(os.path.join(data_folder, folder, file), cv2.IMREAD_GRAYSCALE)
img = cv2.resize(img, (50, 50))
X.append(img.reshape(-1))
y.append(int(folder))
return np.array(X), np.array(y)
# BP神经网络模型
class BPNeuralNetwork:
def __init__(self, input_dim, hidden_dim, output_dim):
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.output_dim = output_dim
self.W1 = np.random.randn(input_dim, hidden_dim)
self.b1 = np.zeros(hidden_dim)
self.W2 = np.random.randn(hidden_dim, output_dim)
self.b2 = np.zeros(output_dim)
def sigmoid(self, x):
return 1 / (1 + np.exp(-x))
def forward(self, X):
z1 = np.dot(X, self.W1) + self.b1
a1 = self.sigmoid(z1)
z2 = np.dot(a1, self.W2) + self.b2
a2 = self.sigmoid(z2)
return a2
def sigmoid_derivative(self, x):
return x * (1 - x)
def backward(self, X, y, output):
delta2 = (y - output) * self.sigmoid_derivative(output)
delta1 = np.dot(delta2, self.W2.T) * self.sigmoid_derivative(self.sigmoid(np.dot(X, self.W1) + self.b1))
dW2 = np.dot(self.sigmoid(np.dot(X, self.W1) + self.b1).T, delta2)
db2 = np.sum(delta2, axis=0)
dW1 = np.dot(X.T, delta1)
db1 = np.sum(delta1, axis=0)
self.W2 += dW2
self.b2 += db2
self.W1 += dW1
self.b1 += db1
def train(self, X, y, epochs=100):
for i in range(epochs):
for j in range(len(X)):
output = self.forward(X[j])
self.backward(X[j], np.eye(self.output_dim)[y[j]], output)
def predict(self, X):
return np.argmax(self.forward(X))
# 加载训练数据
X, y = load_data("data")
# 划分训练集和测试集
train_X = []
train_y = []
test_X = []
test_y = []
for i in range(len(X)):
if random.random() < 0.8:
train_X.append(X[i])
train_y.append(y[i])
else:
test_X.append(X[i])
test_y.append(y[i])
# 训练BP神经网络模型
model = BPNeuralNetwork(2500, 100, 5)
model.train(np.array(train_X), np.array(train_y))
# 在测试集上测试模型
correct = 0
for i in range(len(test_X)):
if model.predict(test_X[i]) == test_y[i]:
correct += 1
accuracy = correct / len(test_X)
print("Accuracy:", accuracy)
```
以上代码包括加载训练数据、BP神经网络模型、训练模型、测试模型等部分。其中,`load_data`函数用于加载训练数据,`BPNeuralNetwork`类定义了BP神经网络模型,包括前向传播、反向传播等方法,`train`方法用于训练模型,`predict`方法用于预测输出,最后通过计算准确率测试模型性能。
阅读全文