trainer.param_groups
时间: 2023-12-30 09:03:43 浏览: 136
`trainer.param_groups` 是一个列表,其中包含了所有模型参数组的信息。每个参数组都是一个字典,包含以下键值对:
- `params`: 包含该参数组中的所有参数的列表。
- `lr`: 学习率。
- `momentum`: 动量因子。
- `weight_decay`: 权重衰减系数。
- `dampening`: 在计算动量时,将动量值抑制的系数。
- `nesterov`: 是否使用 Nesterov 动量。
这些参数可以用来调整训练过程中的优化器参数,以优化模型的性能。
相关问题
yolox训练得到的train_log.txt,怎么用tensorboard查看total_loss、iou_loss、I1_loss、conf_loss、cls_loss曲线,需要怎么修改trainer.py文件
要在tensorboard中查看total_loss、iou_loss、I1_loss、conf_loss、cls_loss曲线,需要在trainer.py文件中添加代码。
以下是添加代码的步骤:
1. 首先,确保你已经安装了tensorboard,可以使用以下命令安装:
```
pip install tensorboard
```
2. 在trainer.py文件中,找到train_epoch函数,修改代码如下:
```python
def train_epoch(model, data_loader, optimizer, epoch, total_batch, logger, cfg):
model.train()
log_iter = cfg.log_iter
accum_iter = cfg.accum_iter
loss_print = 0.
start = time.time()
loss_items = {}
for i, (images, targets, _) in enumerate(data_loader):
iter_idx = i + total_batch * epoch
images = images.cuda()
targets = [{k: v.cuda() for k, v in t.items()} for t in targets]
loss_dict = model(images, targets)
losses = sum(loss_dict[k] for k in loss_dict.keys() if 'loss' in k)
optimizer.zero_grad()
losses.backward()
optimizer.step()
loss_print += losses.item()
if log_iter > 0 and (i + 1) % log_iter == 0:
loss_print /= log_iter
lr = optimizer.param_groups[0]['lr']
logger.info(
f"[Epoch {epoch}/{cfg.epochs}] [Batch {i}/{len(data_loader)}] [lr {lr:.6f}] [Losses {loss_print:.4f}] [Time {time.time() - start:.2f}]"
)
start = time.time()
loss_print = 0.
if accum_iter > 1:
for k in loss_dict.keys():
loss_dict[k] /= accum_iter
losses /= accum_iter
for k, v in loss_dict.items():
if k not in loss_items.keys():
loss_items[k] = [v.item()]
else:
loss_items[k].append(v.item())
if cfg.tensorboard_enable and (i + 1) % cfg.tensorboard_iter == 0:
for k, v in loss_dict.items():
if k not in loss_items.keys():
loss_items[k] = [v.item()]
else:
loss_items[k].append(v.item())
for k, v in loss_items.items():
if len(v) > cfg.tensorboard_window_size:
loss_items[k] = v[-cfg.tensorboard_window_size:]
for k, v in loss_items.items():
if k == 'loss':
continue
writer.add_scalar(f'train/{k}', sum(v) / len(v), iter_idx)
return loss_items
```
3. 在代码中,我们添加了对每个loss的计算和记录到`loss_items`字典中的代码。然后,如果启用了tensorboard,我们将每个loss的平均值写入tensorboard。
4. 最后,在trainer.py文件中的`train`函数中添加以下代码:
```python
if cfg.tensorboard_enable:
writer = SummaryWriter(cfg.log_dir)
else:
writer = None
```
这会启动tensorboard,如果没有启动tensorboard,则设置writer为None。
5. 在训练过程中,你可以在终端中使用以下命令来启动tensorboard:
```
tensorboard --logdir=/path/to/train_log/
```
其中,`/path/to/train_log/`是你train_log.txt文件所在的目录。
6. 最后,你可以在浏览器中打开tensorboard,查看各个loss曲线的变化情况。
阅读全文