基于小数据集的CNN模型架构优化,生成pytorch代码
时间: 2024-02-17 20:00:31 浏览: 87
好的,针对基于小数据集的CNN模型架构优化,以下是一个简单的示例代码,使用PyTorch实现:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
# 定义CNN模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 16, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, padding=1)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(32 * 7 * 7, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.pool(torch.relu(self.conv1(x)))
x = self.pool(torch.relu(self.conv2(x)))
x = x.view(-1, 32 * 7 * 7)
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
# 加载数据集
train_data = ...
test_data = ...
train_loader = DataLoader(train_data, batch_size=32, shuffle=True)
test_loader = DataLoader(test_data, batch_size=32, shuffle=True)
# 定义优化器和损失函数
model = Net()
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
# 训练模型
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print('Epoch %d loss: %.3f' %
(epoch + 1, running_loss / len(train_loader)))
# 测试模型
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
inputs, labels = data
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the test images: %d %%' % (
100 * correct / total))
```
上述代码中,我们定义了一个简单的CNN模型 `Net`,包含两个卷积层、两个全连接层和一个最大池化层。然后我们加载数据集,并定义优化器和损失函数。在训练模型时,我们使用Adam优化器和交叉熵损失函数。在每个epoch结束后,我们输出训练损失。在测试模型时,我们计算模型在测试集上的准确率。
需要注意的是,上述代码只是一个示例,实际应用中需要根据具体情况进行调整和优化。
阅读全文