将stm32fo103系列ADC采集到的模拟电压值转化为电压值

时间: 2024-05-28 21:11:42 浏览: 19
在stm32f103系列中,ADC采集的结果是一个数字量。该数字量代表了模拟量电压值在0到3.3V之间的比例。因此,要将ADC采集到的数字量转化为实际的电压值,需要进行以下步骤: 1. 读取ADC采集到的数字量。 2. 计算数字量对应的电压值。首先,需要得到ADC的分辨率,即ADC采集结果的位数。在stm32f103系列中,ADC的分辨率为12位,因此ADC的结果可以表示为0到4095之间的整数。其次,需要得到系统电压参考值。在stm32f103系列中,系统电压参考值为3.3V。最后,根据以下公式计算实际电压值: V = (ADC采集结果 / 4095) * 3.3V 其中,V表示实际电压值,ADC采集结果表示ADC采集到的数字量。 3. 将计算得到的实际电压值用于后续的处理或显示。
相关问题

stm32f103 ADC采集电压值

对于STM32F103单片机,它有多个ADC通道可以用于模拟信号采集。以下是一个简单的代码示例,可以帮助你采集ADC的电压值: ```c #include "stm32f10x.h" int main(void) { // 初始化ADC ADC_InitTypeDef ADC_InitStructure; GPIO_InitTypeDef GPIO_InitStructure; // 使能ADC1时钟 RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE); // 配置ADC1通道16(DMA1_Channel1) GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; GPIO_Init(GPIOA, &GPIO_InitStructure); // ADC1配置 ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; ADC_InitStructure.ADC_ScanConvMode = DISABLE; ADC_InitStructure.ADC_ContinuousConvMode = DISABLE; ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStructure.ADC_NbrOfChannel = 1; ADC_Init(ADC1, &ADC_InitStructure); // 配置ADC1通道16 ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_55Cycles5); // 使能ADC1 ADC_Cmd(ADC1, ENABLE); // 开始转换 ADC_SoftwareStartConvCmd(ADC1, ENABLE); // 等待转换完成 while(!ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC)); // 读取转换结果 uint16_t adc_value = ADC_GetConversionValue(ADC1); // 计算电压 float voltage = adc_value * 3.3 / 4096; while(1); } ``` 在这个例子中,我们使用ADC1的通道0来采集模拟信号,然后将结果转换为电压值。注意,这只是一个简单的示例,实际使用中可能需要根据具体情况进行修改。

stm32f103c8t6adc采集电压中端口能采集最大的值是多少

对于STM32F103C8T6这款微控制器,其ADC模块的参考电压是3.3V,即Vref+ = 3.3V。因此,ADC模块能够转换的电压范围是0V到3.3V。 在使用ADC模块进行电压采集时,需要将被采集的电压连接到一个合适的引脚上,并配置相应的寄存器和参数。在默认情况下,采样结果将会映射到一个0-4095的12位数字值,其中0代表0V,4095代表3.3V。 需要注意的是,如果输入电压超过了参考电压范围,即大于3.3V,那么可能会导致ADC模块无法正确转换和测量。因此,在进行电压采集时,请确保被测量的电压不超过ADC模块的参考电压范围。

相关推荐

最新推荐

recommend-type

STM32——多通道ADC的DMA方式采集方法_嵌入式_夜风的博客-CSDN博客.pdf

在STM32中,ADC(模拟数字转换器)用于将模拟信号转换为数字信号,以便微控制器能够处理这些信号。多通道ADC意味着可以同时或按顺序对多个不同的模拟输入进行采样。这在需要同时监测多个传感器或信号的情况下非常...
recommend-type

基于STM32的自动量程电压表的设计方案

"基于STM32的自动量程电压表的设计方案" 本文介绍了一种基于STM32的自动量程电压表的设计方案。该方案中所设计的自动量程电压表能够精确的测量直流电压、交流电压,具有测量精度高,抗干扰能力强等特点。整个系统...
recommend-type

揭秘STM32多路电压测量电路

STM32在速度、功耗方面性能都更加优越,并且STM32价格较低,在成本上也有优势。适合于控制电子设备的设计。使用12位ADC,能够满足一定的测量精度,对于较高的测量要求,则需要使用更高精确度的ADC。但是使用高精度 ...
recommend-type

STM32 ADC采样

ADC的主要功能是将模拟信号转换成数字信号,以便嵌入式系统可以对其进行采集、存储和显示。 在STM32F103ZET6中,ADC模块可以工作在独立模式或扫描模式下。独立模式下,ADC只测量一个通道,而扫描模式下,ADC可以...
recommend-type

通过内部通道ADC_IN17获取到ADC转换值.docx

在STM32F0系列微控制器中,ADC(Analog-to-Digital Converter,模拟数字转换器)模块是将模拟信号转换为数字信号的重要组件。通过内部通道ADC_IN17获取到ADC转换值,可以实现对电源电压的检测。 ADC模块的主要功能...
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。