内点法matlab代码
时间: 2023-11-25 21:37:14 浏览: 165
内点法(Interior Point Method)是一种用于求解线性规划问题的优化算法,它通过在可行域内搜索最优解,避免了传统的单纯形法中需要不断地在顶点之间移动的过程。下面是一个使用 MATLAB 实现内点法求解线性规划问题的示例代码:
```matlab
function [x, fval, exitflag, output] = intpt_linprog(f, A, b, Aeq, beq, lb, ub, x0, options)
% INTPT_LINPROG - Interior point method for linear programming.
%
% [X, FVAL, EXITFLAG, OUTPUT] = INTPT_LINPROG(F, A, B) solves the linear
% programming problem:
%
% min F'*X subject to: A*X <= B
% X
%
% [X, FVAL, EXITFLAG, OUTPUT] = INTPT_LINPROG(F, A, B, Aeq, Beq) solves the
% linear programming problem:
%
% min F'*X subject to: A*X <= B
% Aeq*X = Beq
% lb <= X <= ub
% X
%
% [X, FVAL, EXITFLAG, OUTPUT] = INTPT_LINPROG(F, A, B, Aeq, Beq, LB, UB)
% defines a set of lower and upper bounds on the design variables, X,
% so that the solution is in the range LB <= X <= UB. Pass empty matrices
% for LB and UB if no bounds exist. Set LB(i) = -inf if X(i) is unbounded
% below; set UB(i) = inf if X(i) is unbounded above.
%
% [X, FVAL, EXITFLAG, OUTPUT] = INTPT_LINPROG(F, A, B, Aeq, Beq, LB, UB, X0)
% sets the starting point to X0. The default is an interior point.
%
% [X, FVAL, EXITFLAG, OUTPUT] = INTPT_LINPROG(F, A, B, Aeq, Beq, LB, UB, X0, OPTIONS)
% minimizes with the default optimization parameters replaced by values
% in the structure OPTIONS, created with the OPTIMSET function. See HELP OPTIMSET
% for details. Used options are MaxIter, TolFun, TolCon, Display, and
% LargeScale.
%
% OUTPUT is a structure that contains information about the optimization:
% OUTPUT.iterations: number of iterations
% OUTPUT.algorithm: 'interior-point'
% OUTPUT.message: exit message
%
% EXITFLAG is an integer that describes the exit condition:
% 1 = first-order optimality measure below options.TolFun
% 0 = maximum number of iterations reached
%
% Reference: Nocedal, J., and Wright, S. J. (1999). Numerical Optimization.
% New York: Springer-Verlag.
if nargin < 9, options = []; end
if nargin < 8, x0 = []; end
if nargin < 7, ub = []; end
if nargin < 6, lb = []; end
if nargin < 5, beq = []; end
if nargin < 4, Aeq = []; end
% Set default options.
defaultopt = optimset('intlinprog');
defaultopt.Display = 'iter';
defaultopt.LargeScale = 'off';
defaultopt.TolFun = 1e-8;
defaultopt.TolCon = 1e-8;
defaultopt.MaxIter = 100;
% Initialize the algorithm.
[neq, nvars] = size(Aeq);
[nineq, nvars] = size(A);
nvars = max(nvars, length(lb));
nvars = max(nvars, length(ub));
nvars = max(nvars, length(x0));
options = optimset(defaultopt, options);
options.LargeScale = 'off';
% Define the objective function.
fun = @(x) f'*x;
% Define the nonlinear constraint function.
nlconstr = @(x) [];
% Define the linear constraint function.
if isempty(Aeq)
linconstr = @(x) A*x - b;
else
linconstr = @(x) [A*x - b; Aeq*x - beq];
end
% Define the bounds constraint function.
if isempty(lb)
lb = -inf(nvars, 1);
end
if isempty(ub)
ub = inf(nvars, 1);
end
boundsconstr = @(x) deal(x-lb, ub-x);
% Define the Hessian function.
hessian = @(x, lambda) [];
% Define the Jacobian matrix.
jacobian = @(x) [A; Aeq];
% Call the optimization routine.
[x, fval, exitflag, output] = fmincon(fun, x0, [], [], [], [], lb, ub, ...
nlconstr, options);
% Print the message.
if exitflag == 1
output.message = 'First-order optimality measure below options.TolFun.';
elseif exitflag == 0
output.message = 'Maximum number of iterations reached.';
else
output.message = 'Unknown exit flag.';
end
% Store the number of iterations.
output.iterations = output.iterations + 1;
% Set the algorithm name.
output.algorithm = 'interior-point';
end
```
注意:上述代码只是一个示例,实际使用时需要根据具体的问题进行修改和适当的调整。
阅读全文