内点法matlab代码

时间: 2023-11-25 18:37:14 浏览: 184
内点法(Interior Point Method)是一种用于求解线性规划问题的优化算法,它通过在可行域内搜索最优解,避免了传统的单纯形法中需要不断地在顶点之间移动的过程。下面是一个使用 MATLAB 实现内点法求解线性规划问题的示例代码: ```matlab function [x, fval, exitflag, output] = intpt_linprog(f, A, b, Aeq, beq, lb, ub, x0, options) % INTPT_LINPROG - Interior point method for linear programming. % % [X, FVAL, EXITFLAG, OUTPUT] = INTPT_LINPROG(F, A, B) solves the linear % programming problem: % % min F'*X subject to: A*X <= B % X % % [X, FVAL, EXITFLAG, OUTPUT] = INTPT_LINPROG(F, A, B, Aeq, Beq) solves the % linear programming problem: % % min F'*X subject to: A*X <= B % Aeq*X = Beq % lb <= X <= ub % X % % [X, FVAL, EXITFLAG, OUTPUT] = INTPT_LINPROG(F, A, B, Aeq, Beq, LB, UB) % defines a set of lower and upper bounds on the design variables, X, % so that the solution is in the range LB <= X <= UB. Pass empty matrices % for LB and UB if no bounds exist. Set LB(i) = -inf if X(i) is unbounded % below; set UB(i) = inf if X(i) is unbounded above. % % [X, FVAL, EXITFLAG, OUTPUT] = INTPT_LINPROG(F, A, B, Aeq, Beq, LB, UB, X0) % sets the starting point to X0. The default is an interior point. % % [X, FVAL, EXITFLAG, OUTPUT] = INTPT_LINPROG(F, A, B, Aeq, Beq, LB, UB, X0, OPTIONS) % minimizes with the default optimization parameters replaced by values % in the structure OPTIONS, created with the OPTIMSET function. See HELP OPTIMSET % for details. Used options are MaxIter, TolFun, TolCon, Display, and % LargeScale. % % OUTPUT is a structure that contains information about the optimization: % OUTPUT.iterations: number of iterations % OUTPUT.algorithm: 'interior-point' % OUTPUT.message: exit message % % EXITFLAG is an integer that describes the exit condition: % 1 = first-order optimality measure below options.TolFun % 0 = maximum number of iterations reached % % Reference: Nocedal, J., and Wright, S. J. (1999). Numerical Optimization. % New York: Springer-Verlag. if nargin < 9, options = []; end if nargin < 8, x0 = []; end if nargin < 7, ub = []; end if nargin < 6, lb = []; end if nargin < 5, beq = []; end if nargin < 4, Aeq = []; end % Set default options. defaultopt = optimset('intlinprog'); defaultopt.Display = 'iter'; defaultopt.LargeScale = 'off'; defaultopt.TolFun = 1e-8; defaultopt.TolCon = 1e-8; defaultopt.MaxIter = 100; % Initialize the algorithm. [neq, nvars] = size(Aeq); [nineq, nvars] = size(A); nvars = max(nvars, length(lb)); nvars = max(nvars, length(ub)); nvars = max(nvars, length(x0)); options = optimset(defaultopt, options); options.LargeScale = 'off'; % Define the objective function. fun = @(x) f'*x; % Define the nonlinear constraint function. nlconstr = @(x) []; % Define the linear constraint function. if isempty(Aeq) linconstr = @(x) A*x - b; else linconstr = @(x) [A*x - b; Aeq*x - beq]; end % Define the bounds constraint function. if isempty(lb) lb = -inf(nvars, 1); end if isempty(ub) ub = inf(nvars, 1); end boundsconstr = @(x) deal(x-lb, ub-x); % Define the Hessian function. hessian = @(x, lambda) []; % Define the Jacobian matrix. jacobian = @(x) [A; Aeq]; % Call the optimization routine. [x, fval, exitflag, output] = fmincon(fun, x0, [], [], [], [], lb, ub, ... nlconstr, options); % Print the message. if exitflag == 1 output.message = 'First-order optimality measure below options.TolFun.'; elseif exitflag == 0 output.message = 'Maximum number of iterations reached.'; else output.message = 'Unknown exit flag.'; end % Store the number of iterations. output.iterations = output.iterations + 1; % Set the algorithm name. output.algorithm = 'interior-point'; end ``` 注意:上述代码只是一个示例,实际使用时需要根据具体的问题进行修改和适当的调整。
阅读全文

相关推荐

大家在看

recommend-type

COBIT操作手册

COBIT操作手册大全,欢迎大家下载使用
recommend-type

2000-2022年 上市公司-股价崩盘风险相关数据(数据共52234个样本,包含do文件、excel数据和参考文献).zip

上市公司股价崩盘风险是指股价突然大幅下跌的可能性。这种风险可能由多种因素引起,包括公司的财务状况、市场环境、政策变化、投资者情绪等。 测算方式:参考《管理世界》许年行老师和《中国工业经济》吴晓晖老师的做法,使用负收益偏态系数(NCSKEW)和股票收益上下波动比率(DUVOL)度量股价崩盘风险。 数据共52234个样本,包含do文件、excel数据和参考文献。 相关数据指标 stkcd、证券代码、year、NCSKEW、DUVOL、Crash、Ret、Sigma、证券代码、交易周份、周个股交易金额、周个股流通市值、周个股总市值、周交易天数、考虑现金红利再投资的周个股回报率、市场类型、周市场交易总股数、周市场交易总金额、考虑现金红利再投资的周市场回报率(等权平均法)、不考虑现金红利再投资的周市场回报率(等权平均法)、考虑现金红利再投资的周市场回报率(流通市值加权平均法)、不考虑现金红利再投资的周市场回报率(流通市值加权平均法)、考虑现金红利再投资的周市场回报率(总市值加权平均法)、不考虑现金红利再投资的周市场回报率(总市值加权平均法)、计算周市场回报率的有效公司数量、周市场流通市值、周
recommend-type

IEEE_Std_1588-2008

IEEE-STD-1588-2008 标准文档(英文版),里面有关PTP profile关于1588-2008的各种定义
recommend-type

SC1235设计应用指南_V1.2.pdf

SC1235设计应用指南_V1.2.pdf
recommend-type

CG2H40010F PDK文件

CREE公司CG2H40010F功率管的PDK文件。用于ADS的功率管仿真。

最新推荐

recommend-type

抛物线法求解非线性方程例题加matlab代码.docx

在给定的MATLAB代码运行结果中,首先使用外推法`minEM`找到一个初始区间 `[x1, x2] = [1.0500, 4.6500]`,然后使用抛物线法`minPM`在这个区间内找到更精确的最小值点 `x = 1.9997`,对应的函数值为 `mf = 2.6701e-07...
recommend-type

使用matlab高斯消去法、列主元高斯消去法计算n阶线性方程组

在MATLAB代码中,列主元高斯消去法的实现包括: 1. 同样设定n和矩阵A、b,然后在每一步消去之前,找到当前列的最大绝对值元素所在的位置u。 2. 交换最大元所在行与当前行,确保A(k,k)是当前列的最大元素。 3. 执行...
recommend-type

k值聚类分析法matlab代码

《k值聚类分析法在MATLAB中的实现》 k值聚类分析法,也称为K-MEANS算法,是一种广泛应用的数据挖掘技术,主要用于将数据集分成不同的类别或簇。该算法的核心思想是通过迭代过程,将数据点分配到最近的簇中心,并...
recommend-type

列主元Gauss消去法解方程组及matlab代码实现

以下是列主元Gauss消去法的详细步骤和MATLAB代码实现的解析。 1. **算法描述**: - **输入**:系数矩阵`A`和右端项向量`b`。 - **预处理**:计算矩阵的阶数`n`。 - **主循环**(对`k=1,2,...,n-1`): - **...
recommend-type

二维热传导方程有限差分法的MATLAB实现.doc

通过参考已有的文献,如史策教授和曹刚教授的研究,我们可以将一维方法扩展到二维情况,转换热传导方程,并编写相应的MATLAB代码。这种方法不仅理论性强,而且具有实际应用价值,因为它能处理那些难以用实验模拟或...
recommend-type

HTML挑战:30天技术学习之旅

资源摘要信息: "desafio-30dias" 标题 "desafio-30dias" 暗示这可能是一个与挑战或训练相关的项目,这在编程和学习新技能的上下文中相当常见。标题中的数字“30”很可能表明这个挑战涉及为期30天的时间框架。此外,由于标题是西班牙语,我们可以推测这个项目可能起源于或至少是针对西班牙语使用者的社区。标题本身没有透露技术上的具体内容,但挑战通常涉及一系列任务,旨在提升个人的某项技能或知识水平。 描述 "desafio-30dias" 并没有提供进一步的信息,它重复了标题的内容。因此,我们不能从中获得关于项目具体细节的额外信息。描述通常用于详细说明项目的性质、目标和期望成果,但由于这里没有具体描述,我们只能依靠标题和相关标签进行推测。 标签 "HTML" 表明这个挑战很可能与HTML(超文本标记语言)有关。HTML是构成网页和网页应用基础的标记语言,用于创建和定义内容的结构、格式和语义。由于标签指定了HTML,我们可以合理假设这个30天挑战的目的是学习或提升HTML技能。它可能包含创建网页、实现网页设计、理解HTML5的新特性等方面的任务。 压缩包子文件的文件名称列表 "desafio-30dias-master" 指向了一个可能包含挑战相关材料的压缩文件。文件名中的“master”表明这可能是一个主文件或包含最终版本材料的文件夹。通常,在版本控制系统如Git中,“master”分支代表项目的主分支,用于存放项目的稳定版本。考虑到这个文件名称的格式,它可能是一个包含所有相关文件和资源的ZIP或RAR压缩文件。 结合这些信息,我们可以推测,这个30天挑战可能涉及了一系列的编程任务和练习,旨在通过实践项目来提高对HTML的理解和应用能力。这些任务可能包括设计和开发静态和动态网页,学习如何使用HTML5增强网页的功能和用户体验,以及如何将HTML与CSS(层叠样式表)和JavaScript等其他技术结合,制作出丰富的交互式网站。 综上所述,这个项目可能是一个为期30天的HTML学习计划,设计给希望提升前端开发能力的开发者,尤其是那些对HTML基础和最新标准感兴趣的人。挑战可能包含了理论学习和实践练习,鼓励参与者通过构建实际项目来学习和巩固知识点。通过这样的学习过程,参与者可以提高在现代网页开发环境中的竞争力,为创建更加复杂和引人入胜的网页打下坚实的基础。
recommend-type

【CodeBlocks精通指南】:一步到位安装wxWidgets库(新手必备)

![【CodeBlocks精通指南】:一步到位安装wxWidgets库(新手必备)](https://www.debugpoint.com/wp-content/uploads/2020/07/wxwidgets.jpg) # 摘要 本文旨在为使用CodeBlocks和wxWidgets库的开发者提供详细的安装、配置、实践操作指南和性能优化建议。文章首先介绍了CodeBlocks和wxWidgets库的基本概念和安装流程,然后深入探讨了CodeBlocks的高级功能定制和wxWidgets的架构特性。随后,通过实践操作章节,指导读者如何创建和运行一个wxWidgets项目,包括界面设计、事件
recommend-type

andorid studio 配置ERROR: Cause: unable to find valid certification path to requested target

### 解决 Android Studio SSL 证书验证问题 当遇到 `unable to find valid certification path` 错误时,这通常意味着 Java 运行环境无法识别服务器提供的 SSL 证书。解决方案涉及更新本地的信任库或调整项目中的网络请求设置。 #### 方法一:安装自定义 CA 证书到 JDK 中 对于企业内部使用的私有 CA 颁发的证书,可以将其导入至 JRE 的信任库中: 1. 获取 `.crt` 或者 `.cer` 文件形式的企业根证书; 2. 使用命令行工具 keytool 将其加入 cacerts 文件内: ```
recommend-type

VC++实现文件顺序读写操作的技巧与实践

资源摘要信息:"vc++文件的顺序读写操作" 在计算机编程中,文件的顺序读写操作是最基础的操作之一,尤其在使用C++语言进行开发时,了解和掌握文件的顺序读写操作是十分重要的。在Microsoft的Visual C++(简称VC++)开发环境中,可以通过标准库中的文件操作函数来实现顺序读写功能。 ### 文件顺序读写基础 顺序读写指的是从文件的开始处逐个读取或写入数据,直到文件结束。这与随机读写不同,后者可以任意位置读取或写入数据。顺序读写操作通常用于处理日志文件、文本文件等不需要频繁随机访问的文件。 ### VC++中的文件流类 在VC++中,顺序读写操作主要使用的是C++标准库中的fstream类,包括ifstream(用于从文件中读取数据)和ofstream(用于向文件写入数据)两个类。这两个类都是从fstream类继承而来,提供了基本的文件操作功能。 ### 实现文件顺序读写操作的步骤 1. **包含必要的头文件**:要进行文件操作,首先需要包含fstream头文件。 ```cpp #include <fstream> ``` 2. **创建文件流对象**:创建ifstream或ofstream对象,用于打开文件。 ```cpp ifstream inFile("example.txt"); // 用于读操作 ofstream outFile("example.txt"); // 用于写操作 ``` 3. **打开文件**:使用文件流对象的成员函数open()来打开文件。如果不需要在创建对象时指定文件路径,也可以在对象创建后调用open()。 ```cpp inFile.open("example.txt", std::ios::in); // 以读模式打开 outFile.open("example.txt", std::ios::out); // 以写模式打开 ``` 4. **读写数据**:使用文件流对象的成员函数进行数据的读取或写入。对于读操作,可以使用 >> 运算符、get()、read()等方法;对于写操作,可以使用 << 运算符、write()等方法。 ```cpp // 读取操作示例 char c; while (inFile >> c) { // 处理读取的数据c } // 写入操作示例 const char *text = "Hello, World!"; outFile << text; ``` 5. **关闭文件**:操作完成后,应关闭文件,释放资源。 ```cpp inFile.close(); outFile.close(); ``` ### 文件顺序读写的注意事项 - 在进行文件读写之前,需要确保文件确实存在,且程序有足够的权限对文件进行读写操作。 - 使用文件流进行读写时,应注意文件流的错误状态。例如,在读取完文件后,应检查文件流是否到达文件末尾(failbit)。 - 在写入文件时,如果目标文件不存在,某些open()操作会自动创建文件。如果文件已存在,open()操作则会清空原文件内容,除非使用了追加模式(std::ios::app)。 - 对于大文件的读写,应考虑内存使用情况,避免一次性读取过多数据导致内存溢出。 - 在程序结束前,应该关闭所有打开的文件流。虽然文件流对象的析构函数会自动关闭文件,但显式调用close()是一个好习惯。 ### 常用的文件操作函数 - `open()`:打开文件。 - `close()`:关闭文件。 - `read()`:从文件读取数据到缓冲区。 - `write()`:向文件写入数据。 - `tellg()` 和 `tellp()`:分别返回当前读取位置和写入位置。 - `seekg()` 和 `seekp()`:设置文件流的位置。 ### 总结 在VC++中实现顺序读写操作,是进行文件处理和数据持久化的基础。通过使用C++的标准库中的fstream类,我们可以方便地进行文件读写操作。掌握文件顺序读写不仅可以帮助我们在实际开发中处理数据文件,还可以加深我们对C++语言和文件I/O操作的理解。需要注意的是,在进行文件操作时,合理管理和异常处理是非常重要的,这有助于确保程序的健壮性和数据的安全。
recommend-type

【大数据时代必备:Hadoop框架深度解析】:掌握核心组件,开启数据科学之旅

![【大数据时代必备:Hadoop框架深度解析】:掌握核心组件,开启数据科学之旅](https://media.licdn.com/dms/image/C4E12AQGM8ZXs7WruGA/article-cover_image-shrink_600_2000/0/1601775240690?e=2147483647&v=beta&t=9j23mUG6vOHnuI7voc6kzoWy5mGsMjHvqq5ZboqBjjo) # 摘要 Hadoop作为一个开源的分布式存储和计算框架,在大数据处理领域发挥着举足轻重的作用。本文首先对Hadoop进行了概述,并介绍了其生态系统中的核心组件。深入分