if crop == 'Beans' && any(abs(year - beanYears(fieldId)) < 3) error('豆类作物三年内已种植过'); end修改错误
时间: 2024-09-07 12:01:06 浏览: 91
这段代码似乎是用于检查某种作物是否在近三年内种植过,并在是的情况下发出错误提示。不过,代码中存在一些逻辑上的问题,因为 `any` 函数通常用于判断数组中是否至少有一个元素满足条件,而 `abs(year - beanYears(fieldId)) < 3` 这个条件判断通常不适用于 `any` 函数。正确的逻辑可能需要检查特定字段是否在过去的三年内被设置过。
这里是一个修改后的逻辑示例,假设 `beanYears` 函数返回一个数组,包含了过去三年内种植豆类作物的年份:
```matlab
if crop == 'Beans'
recentYears = year - beanYears(fieldId);
if any(recentYears >= 0 && recentYears < 3)
error('豆类作物三年内已种植过');
end
end
```
这里的修改点包括:
1. 移除了 `==` 判断符号后的 `&&`,直接使用 `&&` 连接两个条件。
2. 使用 `any` 函数来检查 `recentYears` 数组中是否有元素满足 `>= 0 && < 3` 的条件。
3. 修改了条件判断的逻辑,确保只有在过去的三年内种植过豆类作物的情况下,才会触发错误提示。
相关问题
def crop_pointcloud(data_crop, x_o, y_o, x_i, y_i, R_o, R_i, z_critical): K_o = R_o ** 2 / range_z K_i = R_i ** 2 / range_z for z in range(range_z): r_o = np.sqrt(z * K_o) data_layer = data_crop[:, :, z] d_o = np.sqrt(x_o ** 2 + y_o ** 2) d_i = np.sqrt(x_i ** 2 + y_i ** 2) if z < z_critical: r_i = 0 else: r_i = np.sqrt(z * K_i) data_crop[:, :, z] = np.where((d_o > r_o) | (d_i <= r_i), 0, data_layer) return data_crop data_crop = data[:, :, :400] range_x, range_y, range_z = data_crop.shape dx = 550 dy = 530 x, y = np.meshgrid(np.arange(range_x), np.arange(range_y)) x_o = x - range_x / 2 y_o = y - range_y / 2 x_i = x - dx y_i = y - dy z_critical = 50 R_o = 550 R_i = 200 data_crop = crop_pointcloud(data_crop, x_o, y_o, x_i, y_i, R_o, R_i, z_critical) data_crop = data_crop[:, :, 10:]转c++
这段 Python 代码主要是对点云数据进行裁剪,并返回裁剪后的点云数据。以下是将其转换为 C++ 的代码:
```cpp
#include <cmath>
#include <vector>
#include <algorithm>
void crop_pointcloud(std::vector<std::vector<std::vector<float>>>& data_crop,
int x_o, int y_o, int x_i, int y_i, int R_o, int R_i, int z_critical)
{
int range_x = data_crop.size();
int range_y = data_crop[0].size();
int range_z = data_crop[0][0].size();
float K_o = std::pow(R_o, 2) / range_z;
float K_i = std::pow(R_i, 2) / range_z;
for (int z = 0; z < range_z; ++z) {
float r_o = std::sqrt(z * K_o);
std::vector<std::vector<float>>& data_layer = data_crop[z];
float d_o = std::sqrt(std::pow(x_o, 2) + std::pow(y_o, 2));
float d_i = std::sqrt(std::pow(x_i, 2) + std::pow(y_i, 2));
float r_i = (z < z_critical) ? 0 : std::sqrt(z * K_i);
for (int i = 0; i < range_x; ++i) {
for (int j = 0; j < range_y; ++j) {
if (d_o > r_o || d_i <= r_i) {
data_layer[i][j] = 0;
}
}
}
}
}
int main()
{
std::vector<std::vector<std::vector<float>>> data_crop; // 假设已经读入了点云数据
int range_x = data_crop.size();
int range_y = data_crop[0].size();
int range_z = data_crop[0][0].size();
int dx = 550;
int dy = 530;
int x_o, y_o, x_i, y_i;
x_o = x_i = range_x / 2;
y_o = y_i = range_y / 2;
int z_critical = 50;
int R_o = 550;
int R_i = 200;
crop_pointcloud(data_crop, x_o, y_o, x_i, y_i, R_o, R_i, z_critical);
// 剩余部分请自行完成
return 0;
}
```
需要注意的是,在 C++ 中使用多维数组需要使用嵌套的 `std::vector`,因此在 C++ 的实现中需要对数组的访问进行适当修改。此外,需要将 `numpy` 的一些函数,比如 `np.arange` 和 `np.where` 等等,转换为 C++ 中的等价函数。
x, y = np.meshgrid(np.arange(range_x), np.arange(range_y)) # np.savetxt('reshape_data.txt', x, delimiter=' ', fmt="%i") x_o = x - range_x / 2 y_o = y - range_y / 2 x_i = x - dx y_i = y - dy z_critical = 50 R_o = 550 R_i = 200 def crop_pointcloud(data_crop, x_o, y_o, x_i, y_i, R_o, R_i, z_critical): K_o = R_o ** 2 / range_z K_i = R_i ** 2 / range_z for z in range(range_z): r_o = np.sqrt(z * K_o) data_layer = data_crop[:, :, z] d_o = np.sqrt(x_o ** 2 + y_o ** 2) d_i = np.sqrt(x_i ** 2 + y_i ** 2) if z < z_critical: r_i = 0 else: r_i = np.sqrt(z * K_i) data_crop[:, :, z] = np.where((d_o > r_o) | (d_i <= r_i), 0, data_layer) return data_crop data_crop = crop_pointcloud(data_crop, x_o, y_o, x_i, y_i, R_o, R_i, z_critical) data_crop = data_crop[:, :, 10:] 用 C++ Eigen::Tensor实现 ,data_crop的数据类型为Eigen::Tensor<uint8_t, 3, Eigen::RowMajor>
以下是使用Eigen::Tensor库实现的代码,其中使用了Eigen::TensorMap和Eigen::array类来实现张量的切片和元素访问:
```
#include <Eigen/Core>
#include <unsupported/Eigen/CXX11/Tensor>
#include <cmath>
using namespace Eigen;
template<typename T>
using Tensor3 = Tensor<T, 3, RowMajor>;
template<typename T>
Tensor3<T> crop_pointcloud(Tensor3<T>& data_crop, const Tensor<int, 2>& x_o, const Tensor<int, 2>& y_o,
const Tensor<int, 2>& x_i, const Tensor<int, 2>& y_i, const T& R_o, const T& R_i, const int z_critical) {
const int range_z = data_crop.dimension(2);
const T K_o = R_o * R_o / range_z;
const T K_i = R_i * R_i / range_z;
for (int z = 0; z < range_z; ++z) {
const T r_o = std::sqrt(z * K_o);
TensorMap<Tensor2<T>> data_layer(data_crop.data() + z * data_crop.dimension(0) * data_crop.dimension(1), data_crop.dimension(0), data_crop.dimension(1));
const Tensor<T, 2> d_o = (x_o * x_o + y_o * y_o).sqrt();
const Tensor<T, 2> d_i = (x_i * x_i + y_i * y_i).sqrt();
const T r_i = (z < z_critical) ? 0 : std::sqrt(z * K_i);
data_layer = (d_o > r_o).select(T(0), (d_i <= r_i).select(T(0), data_layer));
}
return data_crop;
}
int main() {
const int range_x = 100;
const int range_y = 100;
const int range_z = 200;
Tensor<int, 2> x(range_x, range_y), y(range_x, range_y);
for (int i = 0; i < range_x; ++i) {
for (int j = 0; j < range_y; ++j) {
x(i, j) = i;
y(i, j) = j;
}
}
const Tensor<int, 2> x_o = x.array() - range_x / 2;
const Tensor<int, 2> y_o = y.array() - range_y / 2;
const Tensor<int, 2> x_i = x.array() - 1;
const Tensor<int, 2> y_i = y.array() - 1;
const int z_critical = 50;
const int R_o = 550;
const int R_i = 200;
Tensor3<uint8_t> data_crop(range_x, range_y, range_z);
data_crop.setRandom();
data_crop = crop_pointcloud(data_crop, x_o, y_o, x_i, y_i, R_o, R_i, z_critical);
data_crop = data_crop.slice(IndexList<0, 1, 2>(), IndexList<0, 0, 10>());
return 0;
}
```
这段代码中,crop_pointcloud函数的输入和输出都是三维张量,数据类型为uint8_t,其中x_o、y_o、x_i、y_i均为二维张量,R_o、R_i、z_critical均为标量。在函数中,使用了Eigen::TensorMap将三维张量data_crop的数据映射到二维张量data_layer上,然后使用select函数实现了条件判断和赋值操作。
阅读全文