attention_score = torch.matmul(Query, Key.transpose(-1, -2)) / math.sqrt(self.head_size)

时间: 2024-02-26 22:53:47 浏览: 14
这是一个计算attention得分的公式,其中Query和Key都是输入的张量,transpose(-1, -2)是对Key的最后两个维度进行转置,math.sqrt(self.head_size)是对头数进行平方根处理,head_size是头的数量。这个公式的作用是计算Query和Key之间的相似度,并用得分对Value进行加权平均,得到最终的输出。这是Transformer模型中Multi-Head Attention的核心计算过程。
相关问题

attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))

这是一个用于计算self-attention中的注意力分数矩阵的代码,其中query_layer和key_layer是通过对输入序列进行线性变换得到的查询矩阵和键矩阵。这个矩阵乘法操作可以理解为将query_layer中的每个向量与key_layer中的每个向量进行点积,从而得到一个注意力分数矩阵。注意力分数矩阵的每个元素表示查询向量与对应键向量的相似度,越大表示两个向量越相关,越小表示两个向量越不相关。

以下代码存在无法求导反向传播的bug,请你修改:# 反向LSTM input_backward = torch.flip(input, [0]) outputs_backward = [] for t in range(input_backward.size(0)): x = input_backward[t] i = torch.sigmoid(torch.matmul(x, self.W_i_backward) + torch.matmul(h_backward[-1], self.U_i_backward) + self.b_i_backward) f = torch.sigmoid(torch.matmul(x, self.W_f_backward) + torch.matmul(h_backward[-1], self.U_f_backward) + self.b_f_backward) c_tilde = torch.tanh(torch.matmul(x, self.W_c_backward) + torch.matmul(h_backward[-1], self.U_c_backward) + self.b_c_backward) c_backward[-1] = f * c_backward[-1] + i * c_tilde o = torch.matmul(x, self.W_o_backward) + torch.matmul(h_backward[-1], self.U_o_backward) + self.b_o_backward o = torch.sigmoid(o) h_backward[-1] = o * torch.tanh(c_backward[-1]) outputs_backward.append(h_backward[-1]) outputs_backward = torch.flip(torch.stack(outputs_backward), [0])

这段代码看起来没有明显的无法求导反向传播的 bug,但是如果存在问题的话可能是因为某些操作的输入没有进行 requires_grad=True 的设置。可以尝试添加以下代码,保证所有涉及到反向传播的张量都设置了 requires_grad=True: ``` input_backward.requires_grad_() self.W_i_backward.requires_grad_() self.U_i_backward.requires_grad_() self.b_i_backward.requires_grad_() self.W_f_backward.requires_grad_() self.U_f_backward.requires_grad_() self.b_f_backward.requires_grad_() self.W_c_backward.requires_grad_() self.U_c_backward.requires_grad_() self.b_c_backward.requires_grad_() self.W_o_backward.requires_grad_() self.U_o_backward.requires_grad_() self.b_o_backward.requires_grad_() ``` 另外,如果在模型训练时发现该部分无法进行反向传播,可以尝试将该部分的代码放到 `torch.no_grad()` 中,避免该部分的梯度被累加。 ``` with torch.no_grad(): input_backward = torch.flip(input, [0]) outputs_backward = [] for t in range(input_backward.size(0)): x = input_backward[t] i = torch.sigmoid(torch.matmul(x, self.W_i_backward) + torch.matmul(h_backward[-1], self.U_i_backward) + self.b_i_backward) f = torch.sigmoid(torch.matmul(x, self.W_f_backward) + torch.matmul(h_backward[-1], self.U_f_backward) + self.b_f_backward) c_tilde = torch.tanh(torch.matmul(x, self.W_c_backward) + torch.matmul(h_backward[-1], self.U_c_backward) + self.b_c_backward) c_backward[-1] = f * c_backward[-1] + i * c_tilde o = torch.matmul(x, self.W_o_backward) + torch.matmul(h_backward[-1], self.U_o_backward) + self.b_o_backward o = torch.sigmoid(o) h_backward[-1] = o * torch.tanh(c_backward[-1]) outputs_backward.append(h_backward[-1]) outputs_backward = torch.flip(torch.stack(outputs_backward), [0]) ```

相关推荐

class SelfAttention(nn.Module): def init(self, input_size=1, num_heads=1): super(SelfAttention, self).init() self.num_heads = 1 self.head_size = 1 self.query = nn.Linear(1, 1) self.key = nn.Linear(1, 1) self.value = nn.Linear(1, 1) self.out = nn.Linear(1, 1) def forward(self, inputs): batch_size, seq_len, input_size = inputs.size() # 128 706 1 # Split inputs into num_heads inputs = inputs.view(batch_size, seq_len, self.num_heads, self.head_size) inputs = inputs.permute(0, 2, 1, 3).contiguous() queries = self.query(inputs).view(batch_size, self.num_heads, seq_len, self.head_size) keys = self.key(inputs).view(batch_size, self.num_heads, seq_len, self.head_size) values = self.value(inputs).view(batch_size, self.num_heads, seq_len, self.head_size) # Compute attention scores scores = torch.matmul(queries, keys.permute(0, 1, 3, 2)) scores = scores / (self.head_size ** 0.5) attention = F.softmax(scores, dim=-1) # Apply attention weights to values attention_output = torch.matmul(attention, values) attention_output = attention_output.view(batch_size, seq_len, input_size) # Apply output linear layer output = self.out(attention_output) return output class DenseAttentionLayer(nn.Module): def init(self, input_size, return_alphas=True, name=None, num_heads=1): super(DenseAttentionLayer, self).init() self.return_alphas = return_alphas self.name = name self.num_heads = num_heads # If input comes with a hidden dimension (e.g. 5 features per gene) # print("len(input_size): ",len(input_size)) # 2 if len(input_size) == 3: self.feature_collapse = nn.Linear(input_size[-1], 1) input_size = (input_size[0], input_size[1]) self.attention = SelfAttention(input_size=1, num_heads=1) def forward(self, inputs): print("inputs.shape: ",inputs.shape) # torch.Size([128, 706]) output = self.attention(inputs) if self.return_alphas: alphas = F.softmax(output, dim=1) return torch.mul(inputs, alphas), alphas else: return output 对于上述代码其中numheads=1 headsize=1

class DropBlock_Ske(nn.Module): def __init__(self, num_point, block_size=7): super(DropBlock_Ske, self).__init__() self.keep_prob = 0.0 self.block_size = block_size self.num_point = num_point self.fc_1 = nn.Sequential( nn.Linear(in_features=25, out_features=25, bias=True), nn.ReLU(inplace=True), nn.Linear(in_features=25, out_features=25, bias=True), ) self.fc_2 = nn.Sequential( nn.Linear(in_features=25, out_features=25, bias=True), nn.ReLU(inplace=True), nn.Linear(in_features=25, out_features=25, bias=True), ) self.sigmoid = nn.Sigmoid() def forward(self, input, keep_prob, A): # n,c,t,v self.keep_prob = keep_prob if not self.training or self.keep_prob == 1: return input n, c, t, v = input.size() input_attention_mean = torch.mean(torch.mean(input, dim=2), dim=1).detach() # 32 25 input_attention_max = torch.max(input, dim=2)[0].detach() input_attention_max = torch.max(input_attention_max, dim=1)[0] # 32 25 avg_out = self.fc_1(input_attention_mean) max_out = self.fc_2(input_attention_max) out = avg_out + max_out input_attention_out = self.sigmoid(out).view(n, 1, 1, self.num_point) input_a = input * input_attention_out input_abs = torch.mean(torch.mean( torch.abs(input_a), dim=2), dim=1).detach() input_abs = input_abs / torch.sum(input_abs) * input_abs.numel() gamma = 0.024 M_seed = torch.bernoulli(torch.clamp( input_abs * gamma, min=0, max=1.0)).to(device=input.device, dtype=input.dtype) M = torch.matmul(M_seed, A) M[M > 0.001] = 1.0 M[M < 0.5] = 0.0 mask = (1 - M).view(n, 1, 1, self.num_point) return input * mask * mask.numel() / mask.sum()

最新推荐

recommend-type

torch-1.7.1+cu110-cp37-cp37m-linux_x86_64.whl离线安装包linux系统x86_64

torch-1.7.1+cu110-cp37-cp37m-linux_x86_64.whl torchvision-0.8.2+cu110-cp37-cp37m-linux_x86_64.whl 由于超过1G无法上传,给的是百度云链接!!!!!需自行下载
recommend-type

六首页数字藏品NFT交易网React NextJS网站模板 六首页数字藏品nft交易网反应NextJS网站模板

六首页数字藏品NFT交易网React NextJS网站模板 六首页数字藏品nft交易网反应NextJS网站模板
recommend-type

wireshark安装教程入门

wireshark安装教程入门
recommend-type

基于C++负数据库的隐私保护在线医疗诊断系统

【作品名称】:基于C++负数据库的隐私保护在线医疗诊断系统 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】: 基于负数据库的隐私保护在线医疗诊断系统 NDBMedicalSystem 客户端及服务器端 本项目是在保护用户隐私的前提下,完成了对新冠肺炎、乳腺癌、眼疾等多种疾病的智能诊断。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依