我想让你为上面的模型评估函数的返回值进行可视化,请给出相应的py代码
时间: 2024-04-08 16:30:54 浏览: 67
当然,我可以为你提供一个简单的Python代码来可视化这些模型的评估结果。你可以使用`matplotlib`库来绘制柱状图,以下是代码示例:
```python
import matplotlib.pyplot as plt
# 模型名称
models = ['knn', 'forest', 'xgboost', 'nv', 'svm', 'decision']
# 模型评估结果
accuracy = [knn_eva['Accuracy'], forest_eva['Accuracy'], xgboost_eva['Accuracy'], nv_eva['Accuracy'], svm_eva['Accuracy'], decision_eva['Accuracy']]
precision = [knn_eva['Precision'], forest_eva['Precision'], xgboost_eva['Precision'], nv_eva['Precision'], svm_eva['Precision'], decision_eva['Precision']]
recall = [knn_eva['Recall'], forest_eva['Recall'], xgboost_eva['Recall'], nv_eva['Recall'], svm_eva['Recall'], decision_eva['Recall']]
f1 = [knn_eva['F1-score'], forest_eva['F1-score'], xgboost_eva['F1-score'], nv_eva['F1-score'], svm_eva['F1-score'], decision_eva['F1-score']]
# 设置图表参数
plt.figure(figsize=(10, 6))
plt.title('Model Evaluation Results')
plt.xlabel('Models')
plt.ylabel('Score')
# 绘制柱状图
plt.bar(models, accuracy, label='Accuracy', alpha=0.7)
plt.bar(models, precision, label='Precision', alpha=0.7)
plt.bar(models, recall, label='Recall', alpha=0.7)
plt.bar(models, f1, label='F1-score', alpha=0.7)
# 显示图例
plt.legend()
# 展示图表
plt.show()
```
你可以将以上代码保存为一个.py文件,并根据你的模型评估结果进行修改和调整,然后运行该文件,即可得到模型评估结果的可视化柱状图。希望对你有所帮助!如果还有其他问题,请随时提问。
阅读全文