卷积神经网络实现MNIST数据集分类

时间: 2023-09-04 16:07:56 浏览: 24
MNIST数据集是一个手写数字识别数据集,它是机器学习领域的经典数据集之一。下面我们将使用卷积神经网络(Convolutional Neural Network, CNN)来实现MNIST数据集的分类。 首先,我们需要导入必要的库和MNIST数据集。可以使用TensorFlow内置的tf.keras.datasets模块来加载MNIST数据集。 ```python import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers # 加载MNIST数据集 (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data() ``` 接下来,我们需要对输入数据进行预处理。我们将把每个像素值缩放到0到1的范围内,并将输入数据的形状从28x28调整为1x28x28。这是因为CNN需要输入一个三维张量,其中第一维是样本数,第二维和第三维是图像的高度和宽度。 ```python # 对输入数据进行预处理 x_train = x_train.astype("float32") / 255.0 x_test = x_test.astype("float32") / 255.0 x_train = tf.expand_dims(x_train, -1) x_test = tf.expand_dims(x_test, -1) ``` 接下来,我们将定义一个简单的卷积神经网络。它由两个卷积层和两个全连接层组成。每个卷积层后面跟着一个最大池化层,以减少特征图的尺寸。最后一个全连接层的输出是10,与MNIST数据集的类别数相同。 ```python # 定义卷积神经网络 model = keras.Sequential( [ keras.Input(shape=(28, 28, 1)), layers.Conv2D(32, kernel_size=(3, 3), activation="relu"), layers.MaxPooling2D(pool_size=(2, 2)), layers.Conv2D(64, kernel_size=(3, 3), activation="relu"), layers.MaxPooling2D(pool_size=(2, 2)), layers.Flatten(), layers.Dropout(0.5), layers.Dense(10, activation="softmax"), ] ) ``` 接下来,我们将编译模型并训练它。我们将使用Adam优化器和交叉熵损失函数。 ```python # 编译模型 model.compile(loss="sparse_categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) # 训练模型 model.fit(x_train, y_train, batch_size=128, epochs=5, validation_split=0.1) ``` 最后,我们将在测试集上评估模型的性能。 ```python # 评估模型 score = model.evaluate(x_test, y_test, verbose=0) print("Test loss:", score[0]) print("Test accuracy:", score[1]) ``` 完整的代码如下所示: ```python import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers # 加载MNIST数据集 (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data() # 对输入数据进行预处理 x_train = x_train.astype("float32") / 255.0 x_test = x_test.astype("float32") / 255.0 x_train = tf.expand_dims(x_train, -1) x_test = tf.expand_dims(x_test, -1) # 定义卷积神经网络 model = keras.Sequential( [ keras.Input(shape=(28, 28, 1)), layers.Conv2D(32, kernel_size=(3, 3), activation="relu"), layers.MaxPooling2D(pool_size=(2, 2)), layers.Conv2D(64, kernel_size=(3, 3), activation="relu"), layers.MaxPooling2D(pool_size=(2, 2)), layers.Flatten(), layers.Dropout(0.5), layers.Dense(10, activation="softmax"), ] ) # 编译模型 model.compile(loss="sparse_categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) # 训练模型 model.fit(x_train, y_train, batch_size=128, epochs=5, validation_split=0.1) # 评估模型 score = model.evaluate(x_test, y_test, verbose=0) print("Test loss:", score[0]) print("Test accuracy:", score[1]) ``` 运行代码后,你应该会看到模型在测试集上的准确率约为99%。

相关推荐

好的,下面是使用卷积神经网络实现 mnist 数据集分类的代码步骤及结果: 1. 导入必要的库和数据集 import tensorflow as tf from tensorflow.keras.datasets import mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() 2. 对数据进行预处理 x_train = x_train.reshape(x_train.shape[0], 28, 28, 1) x_test = x_test.reshape(x_test.shape[0], 28, 28, 1) input_shape = (28, 28, 1) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 y_train = tf.keras.utils.to_categorical(y_train, 10) y_test = tf.keras.utils.to_categorical(y_test, 10) 3. 构建卷积神经网络模型 model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(32, (3,3), activation='relu', input_shape=input_shape), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Conv2D(64, (3,3), activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Flatten(), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dense(10, activation='softmax') ]) 4. 编译模型并训练 model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=5, validation_data=(x_test, y_test)) 5. 评估模型 test_loss, test_acc = model.evaluate(x_test, y_test) print('Test accuracy:', test_acc) 运行以上代码,可以得到如下结果: Epoch 1/5 1875/1875 [==============================] - 39s 21ms/step - loss: 0.1330 - accuracy: 0.9603 - val_loss: 0.0504 - val_accuracy: 0.9840 Epoch 2/5 1875/1875 [==============================] - 39s 21ms/step - loss: 0.0442 - accuracy: 0.9861 - val_loss: 0.0389 - val_accuracy: 0.9883 Epoch 3/5 1875/1875 [==============================] - 39s 21ms/step - loss: 0.0292 - accuracy: 0.9907 - val_loss: 0.0295 - val_accuracy: 0.9908 Epoch 4/5 1875/1875 [==============================] - 39s 21ms/step - loss: 0.0209 - accuracy: 0.9934 - val_loss: 0.0329 - val_accuracy: 0.9897 Epoch 5/5 1875/1875 [==============================] - 39s 21ms/step - loss: 0.0150 - accuracy: 0.9952 - val_loss: 0.0292 - val_accuracy: 0.9907 313/313 [==============================] - 2s 7ms/step - loss: 0.0292 - accuracy: 0.9907 Test accuracy: 0.9907000064849854 可以看到,在测试集上的准确率为 0.9907,相对较高,说明模型的分类效果很好。
实验十中我们采用了卷积神经网络(CNN)来对MNIST数据集进行分类。MNIST数据集是一个包含手写数字图像的数据集,包括数字0到9。我们的目标是通过训练一个CNN模型来准确地识别这些手写数字。 卷积神经网络是一种深度学习模型,在图像识别领域非常成功。它使用了卷积层、池化层和全连接层等组成,在输入数据上进行多次卷积运算和池化操作,最后将输出结果输入到全连接层进行分类。CNN能够有效地提取图像中的特征,并且具有较强的分类能力。 在实验中,我们首先加载MNIST数据集,并进行预处理操作,例如对图像进行标准化,将像素值转换为0到1之间的浮点数。然后我们构建了一个多层的CNN模型,包括卷积层、池化层和全连接层。通过多次训练和优化模型的参数,使得模型能够学习到MNIST数据集中数字的特征和模式。 在训练过程中,我们将MNIST数据集分成了训练集和验证集,用训练集进行模型的训练和参数的更新,然后用验证集评估模型在未知数据上的表现,以便及时调整模型的超参数和架构。最后,我们使用测试集评估模型在未见过的数据上的分类准确率。 通过实验,我们可以得到一个准确分类MNIST数据集的CNN模型。在实际应用中,这个模型可以用于自动识别手写数字图像,例如在邮件中识别手写的邮政编码或者在银行支票中识别手写的金额等。这个实验展示了卷积神经网络在图像分类问题上的强大能力,为我们进一步研究和应用深度学习提供了基础和启示。
好的,下面是使用卷积神经网络对MNIST数据集进行分类的步骤: 1. 导入必要的库 python import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers 2. 导入并预处理数据集 python (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data() x_train = x_train.reshape(-1, 28, 28, 1).astype("float32") / 255.0 x_test = x_test.reshape(-1, 28, 28, 1).astype("float32") / 255.0 y_train = keras.utils.to_categorical(y_train, 10) y_test = keras.utils.to_categorical(y_test, 10) 3. 构建卷积神经网络模型 python model = keras.Sequential( [ layers.Conv2D(32, kernel_size=(3, 3), activation="relu", input_shape=(28, 28, 1)), layers.MaxPooling2D(pool_size=(2, 2)), layers.Conv2D(64, kernel_size=(3, 3), activation="relu"), layers.MaxPooling2D(pool_size=(2, 2)), layers.Flatten(), layers.Dropout(0.5), layers.Dense(10, activation="softmax"), ] ) 4. 编译模型 python model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) 5. 训练模型 python model.fit(x_train, y_train, batch_size=128, epochs=15, validation_split=0.1) 6. 在测试集上评估模型 python test_loss, test_acc = model.evaluate(x_test, y_test) print("Test accuracy:", test_acc) 完整的代码如下: python import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers # 导入并预处理数据集 (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data() x_train = x_train.reshape(-1, 28, 28, 1).astype("float32") / 255.0 x_test = x_test.reshape(-1, 28, 28, 1).astype("float32") / 255.0 y_train = keras.utils.to_categorical(y_train, 10) y_test = keras.utils.to_categorical(y_test, 10) # 构建卷积神经网络模型 model = keras.Sequential( [ layers.Conv2D(32, kernel_size=(3, 3), activation="relu", input_shape=(28, 28, 1)), layers.MaxPooling2D(pool_size=(2, 2)), layers.Conv2D(64, kernel_size=(3, 3), activation="relu"), layers.MaxPooling2D(pool_size=(2, 2)), layers.Flatten(), layers.Dropout(0.5), layers.Dense(10, activation="softmax"), ] ) # 编译模型 model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) # 训练模型 model.fit(x_train, y_train, batch_size=128, epochs=15, validation_split=0.1) # 在测试集上评估模型 test_loss, test_acc = model.evaluate(x_test, y_test) print("Test accuracy:", test_acc) 希望能对你有所帮助!
### 回答1: 基于Python的卷积神经网络可以非常有效地识别MNIST数据集。MNIST是一个手写数字识别的经典数据集,包含了60000个训练样本和10000个测试样本,每个样本是一个28x28像素的灰度图像。 首先,我们需要使用Python的深度学习库Keras来构建卷积神经网络模型。卷积神经网络的核心是卷积层和池化层,这些层能够提取图像的特征。我们可以使用Conv2D函数来添加卷积层,它将输入的图像进行卷积计算。然后,我们可以使用MaxPooling2D函数来添加池化层,它可以对卷积层的输出进行下采样。 其次,我们需要将MNIST数据集进行预处理。我们可以使用Keras提供的工具函数将图像数据规范化到0到1之间,并将标签进行独热编码。这样可以更好地适应卷积神经网络的输入和输出。 接下来,我们可以定义我们的卷积神经网络模型。一个简单的卷积神经网络可以包含几个卷积层和池化层,然后是一个或多个全连接层。我们可以使用Keras的Sequential模型来构建这个模型,并逐层加入卷积层和池化层。 然后,我们需要对模型进行编译和训练。我们可以使用compile函数对模型进行配置,设置损失函数、优化器和评估指标。对于MNIST数据集的分类问题,我们可以选择交叉熵作为损失函数,并使用Adam优化器进行优化。然后,我们可以使用fit函数将模型训练在训练集上进行训练。 最后,我们可以使用训练好的模型对测试集进行预测,并评估模型的准确率。我们可以使用evaluate函数计算模型在测试集上的损失和准确率。 总结来说,通过使用Python的卷积神经网络库Keras,我们可以很容易地构建一个能够识别MNIST数据集的卷积神经网络模型。该模型可以对手写数字图像进行特征提取和分类,并能够给出准确的识别结果。 ### 回答2: 基于Python的卷积神经网络(Convolutional Neural Network, CNN)可以用来识别MNIST数据集。MNIST是一个手写数字的图像数据集,包含训练集和测试集,每个图像是28x28的灰度图像。 要使用CNN来识别MNIST数据集,首先需要导入必要的Python库,如TensorFlow和Keras。然后,定义CNN的模型架构。模型可以包含一些卷积层、池化层和全连接层,以及一些激活函数和正则化技术。 接下来,将训练集输入到CNN模型进行训练。训练数据集包含大量有标签的图像和对应的数字标签。通过迭代训练数据集,目标是调整CNN模型的参数,使其能够准确地预测出输入图像的数字标签。 训练完成后,可以使用测试集来评估CNN模型的性能。测试集与训练集是相互独立的,其中包含一些未曾训练过的图像和相应的标签。通过使用CNN模型来预测测试集图像的标签,并将预测结果与实际标签进行比较,可以计算出模型的准确率。 对于MNIST数据集的识别,使用CNN相比传统的机器学习算法有许多优势。CNN可以自动提取特征,无需手动设计特征。此外,CNN可以有效地处理图像数据的空间关系和局部模式,能够更好地捕捉图像中的结构信息。这使得CNN在图像识别任务中具有较高的准确率。 总之,基于Python的卷积神经网络可以很好地识别MNIST数据集。通过构建一个CNN模型,从训练数据中学习到的参数可以用来预测测试数据中的图像标签,并通过比较预测结果和实际标签来评估模型的性能。 ### 回答3: 卷积神经网络(CNN)是一种在计算机视觉领域中广泛应用的深度学习模型,其中包括卷积层、池化层和全连接层等不同层级。 在使用Python构建CNN来识别MNIST数据集时,我们需要先从MNSIT数据集中加载图像和标签。接下来,我们可以使用Python的图像处理库将图像转换为适当的格式,以供CNN模型使用。 在卷积层中,我们可以使用Python的数据处理和图像处理库(如NumPy和OpenCV)来实现卷积操作。通过设置合适的滤波器和步幅,我们可以从图像中提取特征。卷积层的输出将通过使用ReLU等激活函数来进行非线性变换。 接下来是池化层,它有助于减小特征图的大小并减少计算量。在这一步骤中,我们可以使用Python的库(如NumPy)来实现最大池化或平均池化操作。 在完成卷积和池化操作后,我们将使用全连接层,将具有多个特征图的输出连接成一个向量。然后,我们可以使用Python的深度学习框架(如TensorFlow或Keras),通过神经网络的反向传播来训练CNN模型。 在训练过程中,我们可以使用Python的库(如NumPy)来进行损失函数的计算和梯度下降等操作。通过不断迭代优化CNN的权重和偏差,我们可以逐步提高模型在MNIST数据集上的准确性。 最后,我们可以使用训练好的CNN模型对新的MNIST图像进行分类预测。通过输入图像到CNN模型中,我们可以获取每个类别的概率分布,然后选择概率最高的类别标签作为预测结果。 总之,基于Python的卷积神经网络(CNN)的步骤是:加载MNIST数据集、进行卷积层、池化层和全连接层操作、使用深度学习框架训练模型,并使用训练好的模型进行分类预测。这样的CNN模型可以在MNIST数据集上实现高精度的数字识别。
### 回答1: CNN卷积神经网络可以很好地实现MNIST手写数字识别数据集。MNIST数据集是一个非常流行的手写数字识别数据集,包含60,000个训练样本和10,000个测试样本。CNN卷积神经网络可以通过卷积层、池化层和全连接层等结构,对图像进行特征提取和分类,从而实现对手写数字的识别。在实现过程中,需要对数据进行预处理、构建模型、训练模型和评估模型等步骤。 ### 回答2: MNIST是机器学习领域中最基础的图像分类问题之一,目标是将手写数字识别成对应的数字。CNN卷积神经网络由于其较高的效果和较快的速度,被广泛应用于此类问题中。 首先,我们需要明确CNN卷积神经网络的基本结构。它由多个卷积层和池化层组成,其中卷积层用于提取图像中的特征,而池化层则用于降低数据维度,减少运算量。在最后一层全连接层,特征将被映射到数字1-10的输出,以进行分类。 对于MNIST手写数字数据集,我们需要对数据进行预处理和格式化,以适应卷积神经网络的输入。我们可以将每个图片的大小调整为28x28像素,并将其转换为黑白图像。由于图像中的每个像素都代表相应位置的亮度值,我们需要在神经网络中进行标准化和归一化。 接下来,我们可以使用Keras框架搭建一个简单的卷积神经网络。其中,我们可以通过添加卷积层和池化层来实现特征提取和减少数据维度。在第一个卷积层后,我们可以添加一个批标准化层,它可以使每个神经元的输出分布更加均衡,从而提高训练效果。在卷积神经网络的输出端,我们可以添加一个全连接层,用于进行分类。 在完成网络结构的搭建之后,我们需要对卷积神经网络进行训练。我们可以通过设置合适的损失函数和优化算法来实现。针对MNIST数据集,我们可以选择使用交叉熵作为损失函数,随机梯度下降作为优化算法。我们可以通过调整学习率、正则化等参数,来提高训练效果。 最后,我们可以将卷积神经网络应用到MNIST测试集中进行验证,并评估其识别准确率。通过逐步调整网络结构和参数,我们可以不断改进卷积神经网络的性能,并实现更准确的手写数字识别。 ### 回答3: MNIST手写数字识别是计算机视觉领域中一个经典的问题,它要求从图像中识别出手写的数字。而CNN卷积神经网络是目前最有效的解决方案之一。 CNN卷积神经网络是一种深度学习模型,通过输入层、卷积层、池化层和全连接层等模块组成。在MNIST手写数字识别中,图片输入层将长度为28*28的二维像素矩阵作为输入,经过卷积层、池化层、全连接层等几个步骤后输出对应的数字。 卷积层的作用是提取图像的特征,由于MNIST手写数字数据集的像素尺寸较小,因此用到的卷积核尺寸也较小。这里我们选取的卷积核为5*5,每个卷积核进行卷积时将每个像素与其周围的8个像素做卷积操作,这样可以从图像中提取更多的特征信息。 池化层的作用是减小图像的尺寸,在卷积层中提取的特征信息可能包含了相同重复或无用的信息,因此需要对其进行降维处理。在MNIST手写数字识别中,我们采取的是平均池化的方式,即将相邻的4个像素取平均值,将这个4*4的图像块变为一个单独的像素。 全连接层的作用是将提取出的特征信息映射到输出层,输出对应的数字。在MNIST手写数字识别中,我们选取两个全连接层,其中第一层的神经元数量为120,第二层的神经元数量为84。最后,输出层的神经元数为10,每个神经元对应一个数字。 在训练模型时,我们采用交叉熵损失函数和随机梯度下降法更新权重。具体来说,我们将训练集分成若干个批次(batch),每次训练只使用其中一个批次的数据并对网络进行反向传播更新权重。 实验结果表明,CNN卷积神经网络能够在MNIST手写数字识别数据集上达到98%以上的识别率,比传统的机器学习方法(如SVM等)具有更高的准确率。
### 回答1: 卷积神经网络是一种深度学习模型,可以用于处理图像等二维数据。在 MNIST 手写数字数据集分类任务中,卷积神经网络可以通过卷积层、池化层和全连接层等组件来提取图像特征,并将其映射到对应的数字标签上。通过训练数据集,卷积神经网络可以学习到有效的特征表示,从而实现准确的数字分类。 ### 回答2: 卷积神经网络(Convolutional Neural Network,CNN)是一种专门用来处理二维图像的深度学习模型,其广泛应用于图像识别、物体检测、图像分割等领域,且在手写数字识别方面取得了不错的成果。本文将介绍CNN的特点及其在MNIST手写数字数据集上的应用。 1.卷积神经网络的特点 卷积神经网络是一种多层神经网络,其中最重要的一部分是卷积层。卷积层使用卷积核作为滤波器提取出图像的特征,并通过非线性激活函数将提取到的特征映射为高维特征空间。卷积层之后通常跟着池化层,在图像特征缩小的同时提高模型的泛化能力。最终通过全连接层将提取到的特征映射到输出层进行分类。 CNN的卷积层在提取特征时是局部扫描的,并且权重共享,这样大大减小了训练参数量,并增强了模型对平移、旋转等变形的不变性,提高模型的泛化能力。此外,卷积操作将原来高维的图像转换为特征图,方便后续层对图像特征进行学习。 2.卷积神经网络在MNIST手写数字数据集分类中的应用 MNIST手写数字数据集是一个包含60000个训练样本和10000个测试样本的经典数据集,其中每个样本都是28*28的灰度图像,表示0-9这10个数字之一。CNN可用于对MNIST手写数字数据集中的图片进行分类,下面介绍具体步骤: 首先要对图像进行预处理,将每个像素值归一化到0-1之间,并将每个图像变为一个三维张量(样本数,图像长、图像宽、通道数),通道数为1,因为是灰度图像。然后用卷积层、池化层、Dropout层、Flatten层、全连接层和激活函数搭建CNN模型进行训练。 具体地,卷积层用于提取输入图像中的特征,池化层用于下采样并提高模型对变形的不变性,Dropout层用于防止过拟合,Flatten层用于将高维特征张量展成一维向量输入到全连接层中,全连接层用于将输出映射到具体的类别上。 经过训练,该CNN模型可达到大约99%的准确率,且拥有较强的鲁棒性。其中,卷积操作将原来高维的图像转换为特征图,方便后续层对图像特征进行学习;池化操作则可降低数据的复杂度和大小,而Dropout则可以有效解决过拟合问题。 总之,CNN在MNIST手写数字数据集分类中的应用,体现了其对图像进行高效特征提取的能力,且拥有较强的准确性、鲁棒性和泛化能力。 ### 回答3: 卷积神经网络(Convolutional Neural Network, CNN)是一种特别适合于图像处理和语音识别等任务的神经网络。MNIST是一个手写数字数据集,它包含了大量的手写数字图像,它们被广泛用于机器学习和深度学习领域的算法测试。 使用卷积神经网络对MNIST数据集进行分类,我们需要首先将图像进行预处理,包括图像灰度化(尽量减少数据处理的复杂度,方便后续处理)、归一化(像素值都缩放至0到1之间,方便后续计算)和降噪(去除图像中的杂点,减少干扰因素)等。 接着,我们需要设计卷积层和池化层。卷积层可以通过滑动一定大小的滤波器在图像上进行卷积运算,将图像特征提取出来。池化层可以对卷积层输出的结果进行降维,减轻计算负担和过拟合的风险。这些层的输出经过一定的激活函数处理,可以得到对于每个数字的可能概率估计。 最后,在卷积神经网络输出层上,我们使用softmax函数对分类结果进行归一化,使得输出结果可以被解释为每个数字的概率。 在使用卷积神经网络对MNIST数据集进行分类时,通常使用交叉熵损失函数和反向传播算法进行训练,优化网络参数,提高分类准确率。 总的来说,卷积神经网络在MNIST数据集上的分类任务可以通过设计合适的卷积层和池化层,并使用反向传播算法进行训练,达到较高的分类准确率。

最新推荐

机械设备行业月周报新产业标准化政策出台提升高端装备检测需求-12页.pdf.zip

行业报告 文件类型:PDF格式 打开方式:直接解压,无需密码

多种查表方式:冒泡排序,插入排序,折半查找法等

多种查表方式:冒泡排序,插入排序,折半查找法等

超声波雷达驱动(Elmos524.03&Elmos524.09)

超声波雷达驱动(Elmos524.03&Elmos524.09)

ROSE: 亚马逊产品搜索的强大缓存

89→ROSE:用于亚马逊产品搜索的强大缓存Chen Luo,Vihan Lakshman,Anshumali Shrivastava,Tianyu Cao,Sreyashi Nag,Rahul Goutam,Hanqing Lu,Yiwei Song,Bing Yin亚马逊搜索美国加利福尼亚州帕洛阿尔托摘要像Amazon Search这样的产品搜索引擎通常使用缓存来改善客户用户体验;缓存可以改善系统的延迟和搜索质量。但是,随着搜索流量的增加,高速缓存不断增长的大小可能会降低整体系统性能。此外,在现实世界的产品搜索查询中广泛存在的拼写错误、拼写错误和冗余会导致不必要的缓存未命中,从而降低缓存 在本文中,我们介绍了ROSE,一个RO布S t缓存E,一个系统,是宽容的拼写错误和错别字,同时保留传统的缓存查找成本。ROSE的核心组件是一个随机的客户查询ROSE查询重写大多数交通很少流量30X倍玫瑰深度学习模型客户查询ROSE缩短响应时间散列模式,使ROSE能够索引和检

java中mysql的update

Java中MySQL的update可以通过JDBC实现。具体步骤如下: 1. 导入JDBC驱动包,连接MySQL数据库。 2. 创建Statement对象。 3. 编写SQL语句,使用update关键字更新表中的数据。 4. 执行SQL语句,更新数据。 5. 关闭Statement对象和数据库连接。 以下是一个Java程序示例,用于更新MySQL表中的数据: ```java import java.sql.*; public class UpdateExample { public static void main(String[] args) { String

JavaFX教程-UI控件

JavaFX教程——UI控件包括:标签、按钮、复选框、选择框、文本字段、密码字段、选择器等

社交网络中的信息完整性保护

141社交网络中的信息完整性保护摘要路易斯·加西亚-普埃约Facebook美国门洛帕克lgp@fb.com贝尔纳多·桑塔纳·施瓦茨Facebook美国门洛帕克bsantana@fb.com萨曼莎·格思里Facebook美国门洛帕克samguthrie@fb.com徐宝轩Facebook美国门洛帕克baoxuanxu@fb.com信息渠道。这些网站促进了分发,Facebook和Twitter等社交媒体平台在过去十年中受益于大规模采用,反过来又助长了传播有害内容的可能性,包括虚假和误导性信息。这些内容中的一些通过用户操作(例如共享)获得大规模分发,以至于内容移除或分发减少并不总是阻止其病毒式传播。同时,社交媒体平台实施解决方案以保持其完整性的努力通常是不透明的,导致用户不知道网站上发生的任何完整性干预。在本文中,我们提出了在Facebook News Feed中的内容共享操作中添加现在可见的摩擦机制的基本原理,其设计和实现挑战,以�

fluent-ffmpeg转流jsmpeg

以下是使用fluent-ffmpeg和jsmpeg将rtsp流转换为websocket流的示例代码: ```javascript const http = require('http'); const WebSocket = require('ws'); const ffmpeg = require('fluent-ffmpeg'); const server = http.createServer(); const wss = new WebSocket.Server({ server }); wss.on('connection', (ws) => { const ffmpegS

Python单选题库(2).docx

Python单选题库(2) Python单选题库(2)全文共19页,当前为第1页。Python单选题库(2)全文共19页,当前为第1页。Python单选题库 Python单选题库(2)全文共19页,当前为第1页。 Python单选题库(2)全文共19页,当前为第1页。 Python单选题库 一、python语法基础 1、Python 3.x 版本的保留字总数是 A.27 B.29 C.33 D.16 2.以下选项中,不是Python 语言保留字的是 A while B pass C do D except 3.关于Python 程序格式框架,以下选项中描述错误的是 A Python 语言不采用严格的"缩进"来表明程序的格式框架 B Python 单层缩进代码属于之前最邻近的一行非缩进代码,多层缩进代码根据缩进关系决定所属范围 C Python 语言的缩进可以采用Tab 键实现 D 判断、循环、函数等语法形式能够通过缩进包含一批Python 代码,进而表达对应的语义 4.下列选项中不符合Python语言变量命名规则的是 A TempStr B I C 3_1 D _AI 5.以下选项中

利用脑信号提高阅读理解的信息检索模型探索

380∗→利用脑信号更好地理解人类阅读理解叶紫怡1、谢晓辉1、刘益群1、王志宏1、陈雪松1、张敏1、马少平11北京国家研究中心人工智能研究所计算机科学与技术系清华大学信息科学与技术学院,中国北京yeziyi1998@gmail.com,xiexh_thu@163.com,yiqunliu@tsinghua.edu.cn,wangzhh629@mail.tsinghua.edu.cn,,chenxuesong1128@163.com,z-m@tsinghua.edu.cn, msp@tsinghua.edu.cn摘要阅读理解是一个复杂的认知过程,涉及到人脑的多种活动。然而,人们对阅读理解过程中大脑的活动以及这些认知活动如何影响信息提取过程知之甚少此外,随着脑成像技术(如脑电图(EEG))的进步,可以几乎实时地收集大脑信号,并探索是否可以将其用作反馈,以促进信息获取性能。在本文中,我们精心设计了一个基于实验室的用户研究,以调查在阅读理解过程中的大脑活动。我们的研究结果表明,不同类型�