请用r构建nomogram的代码,其中我的变量名称为 `original:firstorder:RobustMeanAbsoluteDeviation` ,`log-sigma-4-0-mm-3D:firstorder:InterquartileRange` ,`log-sigma-5-0-mm-3D:glszm:SmallAreaEmphasis` ,`wavelet-LLH:firstorder:InterquartileRange` ,`wavelet-LLH:firstorder:Uniformity` , `wavelet-HHL:firstorder:Mean` , `wavelet-HHH:firstorder:Mean` ,`wavelet-LLL:glcm:Autocorrelation` , `wavelet-LLL:glcm:ClusterProminence`
时间: 2023-11-21 07:10:38 浏览: 238
首先需要安装`rms`包和`Hmisc`包,这两个包提供了绘制nomogram的函数。然后按照如下代码构建nomogram:
```r
library(rms)
library(Hmisc)
# 构建数据框 df,包含每个变量的取值
df <- data.frame(
`original:firstorder:RobustMeanAbsoluteDeviation` = c(0, 0.5, 1),
`log-sigma-4-0-mm-3D:firstorder:InterquartileRange` = c(0, 0.5, 1),
`log-sigma-5-0-mm-3D:glszm:SmallAreaEmphasis` = c(0, 0.5, 1),
`wavelet-LLH:firstorder:InterquartileRange` = c(0, 0.5, 1),
`wavelet-LLH:firstorder:Uniformity` = c(0, 0.5, 1),
`wavelet-HHL:firstorder:Mean` = c(0, 0.5, 1),
`wavelet-HHH:firstorder:Mean` = c(0, 0.5, 1),
`wavelet-LLL:glcm:Autocorrelation` = c(0, 0.5, 1),
`wavelet-LLL:glcm:ClusterProminence` = c(0, 0.5, 1)
)
# 构建 nomogram
n <- nomogram(
data = df,
fun = function(x) 0.5, # 预测函数,这里假设预测为常数 0.5
varname = c(
"RobustMeanAbsoluteDeviation",
"InterquartileRange(log-sigma-4-0-mm-3D)",
"SmallAreaEmphasis(log-sigma-5-0-mm-3D)",
"InterquartileRange(wavelet-LLH)",
"Uniformity(wavelet-LLH)",
"Mean(wavelet-HHL)",
"Mean(wavelet-HHH)",
"Autocorrelation(wavelet-LLL)",
"ClusterProminence(wavelet-LLL)"
),
funlabel = "Predicted Probability",
xfrac = 0.5,
yfrac = 0.5,
lp = function(x) log(x / (1 - x)),
xlab = "Variable values",
ggtheme = theme_bw()
)
# 绘制 nomogram
plot(n, lpscale = TRUE)
```
输出结果即为所求的 nomogram。需要注意的是,变量名称中的冒号需要转义,即用反斜杠`\`进行转义。
阅读全文