import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from keras.models import Sequential from keras.layers import Dense from pyswarm import pso file = "zhong.xlsx" data = pd.read_excel(file) #reading file X=np.array(data.loc[:,'种植密度':'有效积温']) y=np.array(data.loc[:,'产量']) # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.2, random_state=42) # 定义BP神经网络模型 def nn_model(X): model = Sequential() model.add(Dense(X[0], input_dim=X_train.shape[1], activation='relu')) model.add(Dense(X[1], activation='relu')) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') return model # 定义适应度函数 def fitness_func(X): model = nn_model(X) model.fit(X_train, y_train, epochs=100, verbose=0) score = model.evaluate(X_test, y_test, verbose=0) return score # 定义变量的下限和上限 lb = [5, 5] ub = [50, 50] # 利用PySwarm库实现改进的粒子群算法来优化BP神经网络预测模型 result = pso(fitness_func, lb, ub) # 输出最优解和函数值 print('最优解:', result[0]) print('最小函数值:', result[1])
时间: 2024-04-06 08:29:31 浏览: 167
first_NN_keras_keras_神经网络_多层感知机_糖尿病数据集_糖尿病_
这段代码实现了一个改进的粒子群算法来优化BP神经网络预测模型。具体来说,它读取了一个名为"zhong.xlsx"的Excel文件,将其中的数据集分为训练集和测试集,然后定义了一个BP神经网络模型和适应度函数。接着,它定义了变量的下限和上限,并利用PySwarm库实现改进的粒子群算法来优化BP神经网络预测模型。最后,输出了最优解和函数值。
需要注意的是,这段代码中的BP神经网络模型只有一个隐藏层,且隐藏层的神经元数量是由变量X[0]和X[1]来控制的。此外,这里的优化目标是最小化均方误差(MSE),即函数值越小,模型的预测结果与真实值的差距越小。
阅读全文