具体代码
时间: 2023-07-03 10:26:42 浏览: 81
以下是一个基于Python的音乐GAN网络的代码示例,仅供参考:
```python
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers
import librosa
# 定义音乐GAN网络的生成器和判别器
def make_generator_model():
model = tf.keras.Sequential()
model.add(layers.Dense(256, input_shape=(100,)))
model.add(layers.LeakyReLU())
model.add(layers.Dense(512))
model.add(layers.LeakyReLU())
model.add(layers.Dense(1024))
model.add(layers.LeakyReLU())
model.add(layers.Dense(22050))
model.add(layers.Activation('tanh'))
return model
def make_discriminator_model():
model = tf.keras.Sequential()
model.add(layers.Dense(1024, input_shape=(22050,)))
model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Dense(512))
model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Dense(256))
model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Dense(1))
model.add(layers.Activation('sigmoid'))
return model
# 定义GAN网络的损失函数和优化器
cross_entropy = tf.keras.losses.BinaryCrossentropy()
def discriminator_loss(real_output, fake_output):
real_loss = cross_entropy(tf.ones_like(real_output), real_output)
fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
total_loss = real_loss + fake_loss
return total_loss
def generator_loss(fake_output):
return cross_entropy(tf.ones_like(fake_output), fake_output)
generator_optimizer = tf.keras.optimizers.Adam(1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)
# 加载音乐数据集并进行预处理
y, sr = librosa.load('music.wav')
y = librosa.util.normalize(y)
y = y[:y.shape[0] // 22050 * 22050] # 取整数个音频帧
y = y.reshape((-1, 22050)) # 将音频分成多个片段
# 定义训练函数
@tf.function
def train_step(generator, discriminator, music_batch):
noise = tf.random.normal([music_batch.shape[0], 100])
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
generated_music = generator(noise, training=True)
real_output = discriminator(music_batch, training=True)
fake_output = discriminator(generated_music, training=True)
gen_loss = generator_loss(fake_output)
disc_loss = discriminator_loss(real_output, fake_output)
gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)
generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
# 进行训练
generator = make_generator_model()
discriminator = make_discriminator_model()
for epoch in range(epochs):
for batch in y:
train_step(generator, discriminator, batch)
# 生成音乐
noise = tf.random.normal([1, 100])
generated_music = generator(noise, training=False)
librosa.output.write_wav('generated_music.wav', generated_music.numpy().reshape(-1), sr)
```
这个代码示例中,我们先使用librosa库对音乐数据集进行预处理,将音乐分成多个片段,并对每个片段进行归一化处理。然后,我们定义音乐GAN网络的生成器和判别器,并定义了GAN网络的损失函数和优化器。接着,我们使用TensorFlow的tf.GradientTape()函数进行训练,并在训练过程中不断调整网络结构和参数以优化生成的音乐质量。最后,我们使用生成器生成音乐,并将生成的音乐保存成WAV格式。
阅读全文