嵌入式软件测试工程师面试题

时间: 2023-08-19 12:06:24 浏览: 31
回答: 嵌入式软件测试工程师面试题可以包括以下几个问题: 1. 请解释以下变量和指针的定义: - 一个整型数:int a; - 一个指向整型数的指针:int *a; - 一个指向指针的指针,它指向的指针是指向一个整型数:int **a; - 一个有10个整型数的数组:int a[10]; - 一个有10个指针的数组,该指针是指向一个整型数的:int *a[10]; - 一个指向有10个整型数数组的指针(数组指针):int (*a)[10]; - 指向函数的指针,该函数有一个整型参数并返回一个整型数:int (*a)(int); - 一个有10个指针的数组,该指针指向一个函数,该函数有一个整型参数并返回一个整型数:int (*a[10])(int). [1] 2. 给定一个整型变量a,写两段代码,第一个设置a的bit 3,第二个清除a的bit 3,同时保持其他位不变。[1] 设置a的bit 3的代码:a |= (1 << 3); 清除a的bit 3的代码:a &= ~(1 << 3); 3. 运行Test函数会有什么样的结果?[2] 运行Test函数会导致程序崩溃,因为GetMemory并不能传递动态内存,所以Test函数中的str一直都是NULL。而strcpy(str, "hello world");会导致程序崩溃。 4. 在嵌入式系统中,经常需要访问特定的内存位置。请写一段代码,将绝对地址为0x67a9的整型变量的值设置为0xaa55。假设编译器是一个纯粹的ANSI编译器。[3] 代码如下: volatile int *ptr = (volatile int *)0x67a9; *ptr = 0xaa55; 以上是一些可能出现在嵌入式软件测试工程师面试中的问题和答案。

相关推荐

最新推荐

基于python和selenium实现的大麦网自动刷新抢票脚本(代码+文档说明)

# 大麦自动刷新抢票脚本 基于python和selenium实现的大麦网自动刷新抢票脚本(分为PC端和移动端,两者流程略有不同) 获取当前时间跟开票时间对比 用户要提前添加好个人信息和收货地址 由于密码框控件被设置为不可见,需要先自行输入密码并记住密码 (也可用cookie实现) 脚本以抢张学友的票为例,若要抢其他的 只需修改URL, HOUR, MIN三个值即可 默认抢的是580的票面,如若要其他票面的,更改Xpath即可 可用其他演唱会门票进行测试 -------- 该资源内项目源码是个人的毕设,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! <项目介绍> 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 --------

建筑建材行业报告房地产数据仍承压持续关注消费建材优质龙头-24页.pdf.zip

行业报告 文件类型:PDF格式 打开方式:直接解压,无需密码

家用电器行业周观点月数据专题多品类线下回暖个股亮点突出-19页.pdf.zip

行业报告 文件类型:PDF格式 打开方式:直接解压,无需密码

铝行业周报下游开工提升旺季需求可期-31页.pdf.zip

行业报告 文件类型:PDF格式 打开方式:直接解压,无需密码

科技制造行业动态点评算力基础设施建设方兴未艾绿色低碳是明确趋势-3页.pdf - 副本.zip

行业报告 文件类型:PDF格式 打开方式:直接解压,无需密码

学科融合背景下“编程科学”教学活动设计与实践研究.pptx

学科融合背景下“编程科学”教学活动设计与实践研究.pptx

ELECTRA风格跨语言语言模型XLM-E预训练及性能优化

+v:mala2277获取更多论文×XLM-E:通过ELECTRA进行跨语言语言模型预训练ZewenChi,ShaohanHuangg,LiDong,ShumingMaSaksham Singhal,Payal Bajaj,XiaSong,Furu WeiMicrosoft Corporationhttps://github.com/microsoft/unilm摘要在本文中,我们介绍了ELECTRA风格的任务(克拉克等人。,2020b)到跨语言语言模型预训练。具体来说,我们提出了两个预训练任务,即多语言替换标记检测和翻译替换标记检测。此外,我们预训练模型,命名为XLM-E,在多语言和平行语料库。我们的模型在各种跨语言理解任务上的性能优于基线模型,并且计算成本更低。此外,分析表明,XLM-E倾向于获得更好的跨语言迁移性。76.676.476.276.075.875.675.475.275.0XLM-E(125K)加速130倍XLM-R+TLM(1.5M)XLM-R+TLM(1.2M)InfoXLMXLM-R+TLM(0.9M)XLM-E(90K)XLM-AlignXLM-R+TLM(0.6M)XLM-R+TLM(0.3M)XLM-E(45K)XLM-R0 20 40 60 80 100 120触发器(1e20)1介绍使�

docker持续集成的意义

Docker持续集成的意义在于可以通过自动化构建、测试和部署的方式,快速地将应用程序交付到生产环境中。Docker容器可以在任何环境中运行,因此可以确保在开发、测试和生产环境中使用相同的容器镜像,从而避免了由于环境差异导致的问题。此外,Docker还可以帮助开发人员更快地构建和测试应用程序,从而提高了开发效率。最后,Docker还可以帮助运维人员更轻松地管理和部署应用程序,从而降低了维护成本。 举个例子,假设你正在开发一个Web应用程序,并使用Docker进行持续集成。你可以使用Dockerfile定义应用程序的环境,并使用Docker Compose定义应用程序的服务。然后,你可以使用CI

红楼梦解析PPT模板:古典名著的现代解读.pptx

红楼梦解析PPT模板:古典名著的现代解读.pptx

大型语言模型应用于零镜头文本风格转换的方法简介

+v:mala2277获取更多论文一个使用大型语言模型进行任意文本样式转换的方法Emily Reif 1页 达芙妮伊波利托酒店1,2 * 袁安1 克里斯·卡利森-伯奇(Chris Callison-Burch)Jason Wei11Google Research2宾夕法尼亚大学{ereif,annyuan,andycoenen,jasonwei}@google.com{daphnei,ccb}@seas.upenn.edu摘要在本文中,我们利用大型语言模型(LM)进行零镜头文本风格转换。我们提出了一种激励方法,我们称之为增强零激发学习,它将风格迁移框架为句子重写任务,只需要自然语言的指导,而不需要模型微调或目标风格的示例。增强的零触发学习很简单,不仅在标准的风格迁移任务(如情感)上,而且在自然语言转换(如“使这个旋律成为旋律”或“插入隐喻”)上都表现出了1介绍语篇风格转换是指在保持语篇整体语义和结构的前提下,重新编写语篇,使其包含其他或替代的风格元素。虽然�