麻烦讲解一下C语言单元测试中的“测试覆盖率”
时间: 2023-05-31 15:06:18 浏览: 91
以下是一个基于PyTorch的具有三个输入特征和三个输出的一维卷积神经网络的ResNet代码示例,包括训练和测试部分。
```python
import torch
import torch.nn as nn
import torch.optim as optim
class ResBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super(ResBlock, self).__init__()
self.conv1 = nn.Conv1d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm1d(out_channels)
self.conv2 = nn.Conv1d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm1d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.downsample = nn.Sequential(
nn.Conv1d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm1d(out_channels),
)
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, in_channels, out_channels):
super(ResNet, self).__init__()
self.conv = nn.Conv1d(in_channels, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn = nn.BatchNorm1d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool1d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(64, 64, 3)
self.layer2 = self._make_layer(64, 128, 4, stride=2)
self.layer3 = self._make_layer(128, 256, 6, stride=2)
self.layer4 = self._make_layer(256, 512, 3, stride=2)
self.avgpool = nn.AdaptiveAvgPool1d(1)
self.fc = nn.Linear(512, out_channels)
def _make_layer(self, in_channels, out_channels, blocks, stride=1):
layers = []
layers.append(ResBlock(in_channels, out_channels, stride))
for i in range(1, blocks):
layers.append(ResBlock(out_channels, out_channels))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
# 训练模型
def train(model, train_loader, optimizer, criterion, device):
model.train()
train_loss = 0
for data, target in train_loader:
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
train_loss += loss.item() * data.size(0)
train_loss /= len(train_loader.dataset)
return train_loss
# 测试模型
def test(model, test_loader, criterion, device):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += criterion(output, target).item() * data.size(0)
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
accuracy = 100. * correct / len(test_loader.dataset)
return test_loss, accuracy
# 加载数据
train_data = torch.randn(100, 3, 100)
train_target = torch.randint(0, 3, (100,))
test_data = torch.randn(20, 3, 100)
test_target = torch.randint(0, 3, (20,))
train_dataset = torch.utils.data.TensorDataset(train_data, train_target)
test_dataset = torch.utils.data.TensorDataset(test_data, test_target)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=16, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=16, shuffle=False)
# 训练模型
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = ResNet(3, 3).to(device)
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
criterion = nn.CrossEntropyLoss()
for epoch in range(10):
train_loss = train(model, train_loader, optimizer, criterion, device)
test_loss, accuracy = test(model, test_loader, criterion, device)
print(f"Epoch {epoch+1}: train loss = {train_loss:.4f}, test loss = {test_loss:.4f}, accuracy = {accuracy:.2f}%")
```
在这个示例中,我们定义了一个名为`ResBlock`的模块,用于实现ResNet中的残差块。然后我们定义了一个名为`ResNet`的模型,该模型包含了多个ResBlock模块,用于构建一个深度卷积神经网络。最后,我们定义了一个训练和测试函数,用于训练和测试模型。我们使用PyTorch自带的优化器和损失函数进行训练。在训练过程中,我们使用GPU进行计算(如果可用)。最后,我们使用示例数据集对模型进行了10个周期的训练和测试。
阅读全文