1dcnn+lstm多输出pytorch
时间: 2023-08-01 11:06:03 浏览: 80
lstm-and-cnn-:pytorch版学习
您好!感谢您的提问。下面是一个简单的 1D-CNN + LSTM 多输出的 PyTorch 实现示例:
```python
import torch
import torch.nn as nn
class CNN_LSTM(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(CNN_LSTM, self).__init__()
self.hidden_size = hidden_size
self.conv1 = nn.Conv1d(input_size, 32, kernel_size=3, padding=1)
self.relu1 = nn.ReLU(inplace=True)
self.pool1 = nn.MaxPool1d(kernel_size=2, stride=2)
self.conv2 = nn.Conv1d(32, 64, kernel_size=3, padding=1)
self.relu2 = nn.ReLU(inplace=True)
self.pool2 = nn.MaxPool1d(kernel_size=2, stride=2)
self.lstm = nn.LSTM(64, hidden_size, batch_first=True)
self.fc1 = nn.Linear(hidden_size, output_size[0])
self.fc2 = nn.Linear(hidden_size, output_size[1])
self.fc3 = nn.Linear(hidden_size, output_size[2])
def forward(self, x):
x = self.conv1(x)
x = self.relu1(x)
x = self.pool1(x)
x = self.conv2(x)
x = self.relu2(x)
x = self.pool2(x)
x = x.transpose(1, 2)
_, (h_n, _) = self.lstm(x)
h_n = h_n[-1]
out1 = self.fc1(h_n)
out2 = self.fc2(h_n)
out3 = self.fc3(h_n)
return out1, out2, out3
```
这个模型的输入是一个 3D 的 tensor,形状为 `(batch_size, input_size, sequence_length)`。在这个模型中,我们首先使用了两个 1D-CNN 层和池化层来提取输入序列的特征,然后使用了一个 LSTM 层来处理序列数据。最后,我们使用三个全连接层来输出对应的三个结果。
使用这个模型的示例代码:
```python
# 定义模型
model = CNN_LSTM(input_size=10, hidden_size=64, output_size=[2, 1, 3])
# 定义输入数据
batch_size = 32
sequence_length = 20
input_size = 10
x = torch.randn(batch_size, input_size, sequence_length)
# 运行模型
out1, out2, out3 = model(x)
print(out1.shape) # torch.Size([32, 2])
print(out2.shape) # torch.Size([32, 1])
print(out3.shape) # torch.Size([32, 3])
```
在这个示例中,我们使用了一个输入形状为 `(32, 10, 20)` 的数据,并且输出了三个不同形状的结果。您可以根据您的数据和需要来修改这个模型。
阅读全文