编写c程序,基于STM32单片机,使用Proteus仿真完成综合设计。具体任务要求如下:在程序整个执行过程中,要求控制单片机A的LED1灯进行闪烁,提示系统正在运行。按下按键1,控制单片机A向单片机B发送自己学号。单片机B判断接收到的数据是否是自己的学号,如果是,则单片机B控制LED2灯亮,否则LED2灯灭。按下按键2,控制单片机B向单片机A发送自己学号。单片机A判断接收到的数据是否是自己的学号,如果是,则单片机A控制LED3灯亮,否则LED3灯灭。其他。

时间: 2023-06-24 12:05:44 浏览: 103
由于这是一道综合设计的题目,需要进行软硬件的综合设计。以下是可能的实现方案: 硬件部分: - 单片机A:使用STM32F103RCT6单片机,连接一个LED灯到GPIOA的Pin0引脚上,连接按键1到GPIOA的Pin1引脚上,连接串口1到PA9和PA10引脚上。 - 单片机B:使用STM32F103RCT6单片机,连接一个LED灯到GPIOA的Pin1引脚上,连接按键2到GPIOA的Pin2引脚上,连接串口1到PA9和PA10引脚上。 软件部分: - 使用Keil C51编写单片机A和单片机B的程序,实现按键检测、LED控制和串口通信功能。 - 在单片机A中实现按下按键1时向单片机B发送学号的功能,同时接收单片机B的学号并进行比较,控制自己的LED3灯亮或灭。 - 在单片机B中实现按下按键2时向单片机A发送学号的功能,同时接收单片机A的学号并进行比较,控制自己的LED2灯亮或灭。 在Proteus中进行仿真时,需要添加两个单片机和一个虚拟串口。将单片机A和单片机B的程序烧录到相应的单片机上,连接虚拟串口到单片机A和单片机B的串口引脚上。在仿真时,通过按下按键1和按键2来观察LED灯的状态变化,验证程序的正确性。
相关问题

编写c程序,基于STM32单片机,使用Proteus仿真完成综合设计。具体任务要求如下:在程序整个执行过程中,要求控制单片机A的LED1灯进行闪烁,提示系统正在运行。按下按键1,控制单片机A向单片机B发送自己学号。单片机B判断接收到的数据是否是自己的学号,如果是,则单片机B控制LED2灯亮,否则LED2灯灭。按下按键2,控制单片机B向单片机A发送自己学号。单片机A判断接收到的数据是否是自己的学号,如果是,则单片机A控制LED3灯亮,否则LED3灯灭。

由于这是一个综合设计任务,需要涉及到硬件和软件两个方面。下面是一个大致的流程: 1. 硬件设计:使用STM32单片机,连接LED1、LED2、LED3和两个按键。按键1连接到单片机A的GPIO,按键2连接到单片机B的GPIO。单片机A和单片机B之间使用串口通信,可以使用USART模块实现。 2. 软件设计:编写C语言程序,在程序整个执行过程中,控制单片机A的LED1灯进行闪烁。使用中断处理函数来检测按键1和按键2的状态变化,并在按键按下时发送数据。使用串口中断处理函数来接收数据,并在接收到数据后进行比较,控制相应的LED灯亮或灭。 下面是一个大致的代码框架: ```c #include "stm32f10x.h" #define LED1_PIN GPIO_Pin_0 #define LED1_PORT GPIOA #define LED2_PIN GPIO_Pin_1 #define LED2_PORT GPIOA #define LED3_PIN GPIO_Pin_2 #define LED3_PORT GPIOA #define KEY1_PIN GPIO_Pin_0 #define KEY1_PORT GPIOB #define KEY2_PIN GPIO_Pin_1 #define KEY2_PORT GPIOB #define USART_TX_PIN GPIO_Pin_9 #define USART_TX_PORT GPIOA #define USART_RX_PIN GPIO_Pin_10 #define USART_RX_PORT GPIOA #define USART_BAUDRATE 9600 #define USART1_IRQn USART1_IRQn uint8_t my_id[] = "xxxxxx"; // 将自己的学号填入这里 void delay(uint32_t ms) { // 实现延时函数 } void LED1_Init() { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); GPIO_InitStructure.GPIO_Pin = LED1_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(LED1_PORT, &GPIO_InitStructure); } void LED2_Init() { // 实现LED2初始化函数 } void LED3_Init() { // 实现LED3初始化函数 } void KEY1_Init() { // 实现按键1初始化函数 } void KEY2_Init() { // 实现按键2初始化函数 } void USART1_Init() { // 实现USART1初始化函数 } void send_data(uint8_t* data, uint16_t len) { // 实现串口发送函数 } uint8_t receive_data() { // 实现串口接收函数 } void USART1_IRQHandler() { // 实现串口中断处理函数 } int main() { uint8_t buf[10]; SysTick_Config(SystemCoreClock / 1000); LED1_Init(); LED2_Init(); LED3_Init(); KEY1_Init(); KEY2_Init(); USART1_Init(); while (1) { GPIO_SetBits(LED1_PORT, LED1_PIN); // 控制LED1灯亮 delay(500); GPIO_ResetBits(LED1_PORT, LED1_PIN); // 控制LED1灯灭 delay(500); } } void EXTI0_IRQHandler() { // 实现按键1中断处理函数 } void EXTI1_IRQHandler() { // 实现按键2中断处理函数 } ``` 需要注意的是,以上代码只是一个大致的框架,具体实现还需要根据硬件和软件的具体情况进行调整。同时,由于涉及到STM32单片机的硬件设计和Proteus仿真,也需要具备一定的电路设计和仿真经验。

基于stm32单片机闹钟proteus仿真

基于STM32单片机的闹钟可以通过Proteus软件进行仿真。首先,在Proteus中找到STM32单片机的元件并进行搭建电路,可以选择不同的型号和外围设备,根据实际需求连接LED显示屏、按键、蜂鸣器等元件。接着,编写STM32单片机的程序代码,可以使用CubeMX生成代码框架,然后在Keil或者其他编程软件中编写具体的闹钟功能代码,比如显示时间、设置闹钟、响铃等功能。将编写好的代码通过Proteus中的仿真器加载到STM32单片机中,然后进行仿真运行。在仿真运行过程中,可以观察LED显示屏上时间的变化,通过按键操作设置闹钟,并且当达到闹钟设定时间时蜂鸣器会响起。通过Proteus仿真,可以检验闹钟的功能是否符合预期,以及调试程序代码,确保实际硬件制作完成后的正常运行。 在仿真过程中,还可以对电路进行调试,检查连接是否正确,观察电压、电流等参数,确保电路的稳定性和可靠性。通过Proteus仿真,可以在实际制作硬件之前对闹钟进行全面的测试和调试,提高设计的成功率,节约成本和时间。因此,基于STM32单片机的闹钟可以在Proteus中进行完整的仿真,从而更好地了解并优化闹钟的设计。

相关推荐

最新推荐

recommend-type

基于STM32单片机流水灯仿真与程序设计

本次程序设计和仿真是基于Proteus和keil的环境对STM32F103系列单片机进行流水灯设计,通过配置STM32的GPIO工作模式,实现LED的点亮和熄灭;通过配置8位流水灯程序设计,实现灯的流水实现。 关键字:Proteus、keil、...
recommend-type

单片机课程设计电子秤电子称(proteus仿真)

单片机课程设计电子秤 有液晶显示 价格 重量 单价显示 以及C语言(c51)编程 proteus硬件连接图 运行结果 流程图
recommend-type

PROTEUS中的复位电路

单片机在启动时都需要复位,以使CPU及系统各部件处于确定的初始状态,并从初态开始工作。89系列单片机的复位信号是从RST引脚输入到芯片内的施密特触发器中的。当系统处于正常工作状态时,且振荡器稳定后,如果RST...
recommend-type

AM2302(又称DHT22)温湿度传感器的使用及Proteus仿真(附源码)

校准系数以程序的形式储存在单片机中,传感器内部在检测信号的处理过程中要调用这些校准系数。标准单总线接口,使系统集成变得简易快捷。超小的体积、极低的功耗,信号传输距离可达20米以上,使其成为各类应用甚至...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

如何用python编写api接口

在Python中编写API接口可以使用多种框架,其中比较流行的有Flask和Django。这里以Flask框架为例,简单介绍如何编写API接口。 1. 安装Flask框架 使用pip命令安装Flask框架: ``` pip install flask ``` 2. 编写API接口 创建一个Python文件,例如app.py,编写以下代码: ```python from flask import Flask, jsonify app = Flask(__name__) @app.route('/api/hello', methods=['GET']) def hello():
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依