Vgg19bn、Inc-v3、Res50和Dense169这些模型是怎样调用的,请复现一下代码
时间: 2024-12-02 22:21:32 浏览: 13
图像识别:基于Resnet50 + VGG16模型融合的人体细胞癌症分类模型实现-神经网络资源
在论文中提到的Vgg19bn、Inc-v3、Res50和Dense169等模型是作为教师模型(teacher models)来指导知识蒸馏过程中的学生模型(student model)训练的。具体来说,这些模型被用来生成软标签(soft labels),然后通过知识蒸馏的方法将这些软标签传递给学生模型。
以下是基于PyTorch的一个示例代码,展示如何使用这些预训练的教师模型进行知识蒸馏:
### 导入必要的库
```python
import torch
import torch.nn as nn
import torchvision.models as models
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
```
### 定义教师模型
```python
def load_teacher_models():
vgg19bn = models.vgg19_bn(pretrained=True)
inc_v3 = models.inception_v3(pretrained=True, aux_logits=False)
res50 = models.resnet50(pretrained=True)
dense169 = models.densenet169(pretrained=True)
# 将模型设置为评估模式
vgg19bn.eval()
inc_v3.eval()
res50.eval()
dense169.eval()
return vgg19bn, inc_v3, res50, dense169
```
### 定义数据加载器
```python
def get_data_loader(batch_size):
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
return train_loader
```
### 定义学生模型
```python
class StudentModel(nn.Module):
def __init__(self):
super(StudentModel, self).__init__()
self.model = models.resnet18(pretrained=False)
num_ftrs = self.model.fc.in_features
self.model.fc = nn.Linear(num_ftrs, 10) # CIFAR-10 has 10 classes
def forward(self, x):
return self.model(x)
```
### 计算软标签
```python
def compute_soft_labels(images, teacher_models, temperature):
with torch.no_grad():
soft_labels = []
for model in teacher_models:
logits = model(images)
soft_labels.append(torch.softmax(logits / temperature, dim=1))
# 可以选择平均或随机选择一个教师模型的软标签
if len(soft_labels) > 1:
soft_labels = sum(soft_labels) / len(soft_labels)
else:
soft_labels = soft_labels[0]
return soft_labels
```
### 训练学生模型
```python
def train_student_model(student_model, teacher_models, train_loader, epochs, temperature, device):
student_model.to(device)
optimizer = torch.optim.Adam(student_model.parameters(), lr=0.001)
criterion = nn.KLDivLoss(reduction='batchmean')
for epoch in range(epochs):
running_loss = 0.0
for images, _ in train_loader:
images = images.to(device)
# 计算软标签
soft_labels = compute_soft_labels(images, teacher_models, temperature).to(device)
# 前向传播
student_outputs = student_model(images)
student_soft_outputs = torch.log_softmax(student_outputs / temperature, dim=1)
# 计算损失
loss = criterion(student_soft_outputs, soft_labels)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss += loss.item() * images.size(0)
epoch_loss = running_loss / len(train_loader.dataset)
print(f"Epoch [{epoch+1}/{epochs}], Loss: {epoch_loss:.4f}")
```
### 主函数
```python
if __name__ == "__main__":
batch_size = 64
epochs = 10
temperature = 10
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 加载教师模型
teacher_models = load_teacher_models()
# 获取数据加载器
train_loader = get_data_loader(batch_size)
# 初始化学生模型
student_model = StudentModel()
# 训练学生模型
train_student_model(student_model, teacher_models, train_loader, epochs, temperature, device)
```
这个示例代码展示了如何使用多个预训练的教师模型进行知识蒸馏,并训练一个学生模型。你可以根据需要调整参数和模型结构。希望这对你有所帮助!
阅读全文