锚细化模块将VGG-16的fc8以及dropout层去除,将其中的fc6以及fc7转变为卷积层分别为1*1以及3*3代码
时间: 2023-12-06 15:44:50 浏览: 126
基于VGG-16的中草药识别项目代码.zip
下面是锚细化模块将VGG-16的fc6和fc7转变为卷积层的代码:
```python
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
class VGG16(nn.Module):
def __init__(self):
super(VGG16, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(128, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(256, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
)
self.conv6 = nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6)
self.conv7 = nn.Conv2d(1024, 1024, kernel_size=1)
def forward(self, x):
x = self.features(x)
x = F.relu(self.conv6(x))
x = F.relu(self.conv7(x))
return x
```
在这个代码中,我们将原本的fc6和fc7转换为了卷积层conv6和conv7,其中conv6的kernel_size为3,padding为6,dilation为6,而conv7的kernel_size为1。这样做的目的是为了将原本的全连接层转换为卷积层,从而使得VGG-16可以处理任意大小的输入图像。
阅读全文