pytorch下载USPS数据集
时间: 2023-11-06 09:00:55 浏览: 430
要在PyTorch中下载USPS数据集,你可以使用torchvision.datasets.USPS()函数。这个函数会返回一个torch.utils.data.Dataset对象,该对象包含USPS数据集的样本和标签。你可以使用torch.utils.data.DataLoader来加载这个数据集。下面是一个例子代码:
```
import torchvision.datasets as datasets
import torch.utils.data as data
usps_data = datasets.USPS(root='path/to/usps_root', train=True, download=True, transform=transforms.ToTensor())
usps_loader = data.DataLoader(usps_data, batch_size=batch_size, shuffle=True)
```
这个例子中,'path/to/usps_root'是你想要存储USPS数据集的路径,train=True表示下载训练集,download=True表示如果数据集不存在则会自动下载,transforms.ToTensor()将数据转换为张量形式。你可以根据需要修改参数来满足你的需求。
相关问题
用CNN和领域自适应进行样本迁移pytorch
样本迁移是指在源域和目标域之间进行数据转移的过程,其中CNN和领域自适应是常用的方法之一。下面是一个使用PyTorch实现的样本迁移的示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import numpy as np
from torchvision import datasets, transforms
# 定义源域和目标域的数据集
source_dataset = datasets.MNIST(
'./data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
)
target_dataset = datasets.USPS(
'./data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
)
# 定义卷积神经网络(CNN)模型
class CNNModel(nn.Module):
def __init__(self):
super(CNNModel, self).__init__()
self.conv1 = nn.Conv2d(1, 20, kernel_size=5)
self.conv2 = nn.Conv2d(20, 50, kernel_size=5)
self.fc1 = nn.Linear(4*4*50, 500)
self.fc2 = nn.Linear(500, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2)
x = x.view(-1, 4*4*50)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
# 定义领域自适应(DA)模型
class DAModel(nn.Module):
def __init__(self):
super(DAModel, self).__init__()
self.fc1 = nn.Linear(500, 500)
self.fc2 = nn.Linear(500, 2)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
# 定义源域和目标域的数据加载器
source_loader = torch.utils.data.DataLoader(
source_dataset, batch_size=64, shuffle=True
)
target_loader = torch.utils.data.DataLoader(
target_dataset, batch_size=64, shuffle=True
)
# 定义CNN和DA的优化器和损失函数
cnn_model = CNNModel()
da_model = DAModel()
cnn_optimizer = optim.SGD(cnn_model.parameters(), lr=0.01, momentum=0.5)
da_optimizer = optim.SGD(da_model.parameters(), lr=0.01, momentum=0.5)
criterion = nn.CrossEntropyLoss()
# 训练CNN和DA模型
for epoch in range(10):
for i, (source_data, source_target) in enumerate(source_loader):
target_data, _ = iter(target_loader).next()
cnn_optimizer.zero_grad()
da_optimizer.zero_grad()
source_output = cnn_model(source_data)
source_loss = criterion(source_output, source_target)
target_output = cnn_model(target_data)
da_input = target_output.detach()
da_output = da_model(da_input)
domain_target = torch.ones(target_output.size(0)).long()
domain_target = domain_target.cuda() if torch.cuda.is_available() else domain_target
domain_loss = criterion(da_output, domain_target)
loss = source_loss + domain_loss
loss.backward()
cnn_optimizer.step()
da_optimizer.step()
print('Epoch: {}, Loss: {:.4f}'.format(epoch+1, loss.item()))
```
在这个示例中,我们使用了一个CNN模型作为源域和目标域之间数据的特征提取器,然后使用一个DA模型来适应不同的数据分布。在训练过程中,我们通过最小化源域和目标域之间的分类误差和领域误差来更新CNN和DA模型的参数。最终,我们可以使用训练好的CNN模型在目标域上进行分类预测。
DANN 自定义数据集 图像分类 python代码
以下是使用Python和PyTorch框架构建DANN模型进行图像分类的代码示例。假设我们的数据集包括两个域:源域和目标域,每个域包含10个类别,每个类别包含100张大小为28x28的灰度图像。
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torch.autograd import Function
from torch.utils.data import DataLoader
from torch.utils.data.dataset import Dataset
class CustomDataset(Dataset):
def __init__(self, data, labels):
self.data = data
self.labels = labels
def __getitem__(self, index):
x = self.data[index]
y = self.labels[index]
return x, y
def __len__(self):
return len(self.data)
class ReverseLayerF(Function):
@staticmethod
def forward(ctx, x, alpha):
ctx.alpha = alpha
return x
@staticmethod
def backward(ctx, grad_output):
output = grad_output.neg() * ctx.alpha
return output, None
class DANN(nn.Module):
def __init__(self):
super(DANN, self).__init__()
self.feature_extractor = nn.Sequential(
nn.Conv2d(1, 32, 5),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(32, 48, 5),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(48 * 4 * 4, 100),
nn.ReLU()
)
self.class_classifier = nn.Sequential(
nn.Linear(100, 100),
nn.ReLU(),
nn.Linear(100, 10)
)
self.domain_classifier = nn.Sequential(
nn.Linear(100, 100),
nn.ReLU(),
nn.Linear(100, 2)
)
def forward(self, x, alpha):
features = self.feature_extractor(x)
class_output = self.class_classifier(features)
reverse_features = ReverseLayerF.apply(features, alpha)
domain_output = self.domain_classifier(reverse_features)
return class_output, domain_output
def train(model, dataloader):
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
criterion_class = nn.CrossEntropyLoss()
criterion_domain = nn.CrossEntropyLoss()
for epoch in range(10):
for i, (source_data, source_labels) in enumerate(dataloader['source']):
source_data, source_labels = source_data.to(device), source_labels.to(device)
target_data, _ = next(iter(dataloader['target']))
target_data = target_data.to(device)
source_domain_labels = torch.zeros(source_data.size(0)).long().to(device)
target_domain_labels = torch.ones(target_data.size(0)).long().to(device)
optimizer.zero_grad()
source_class_output, source_domain_output = model(source_data, 0.1)
source_class_loss = criterion_class(source_class_output, source_labels)
source_domain_loss = criterion_domain(source_domain_output, source_domain_labels)
target_class_output, target_domain_output = model(target_data, 0.1)
target_domain_loss = criterion_domain(target_domain_output, target_domain_labels)
loss = source_class_loss + source_domain_loss + target_domain_loss
loss.backward()
optimizer.step()
if i % 10 == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, 10, i+1, len(dataloader['source']), loss.item()))
def test(model, dataloader):
correct = 0
total = 0
with torch.no_grad():
for data, labels in dataloader['target']:
data, labels = data.to(device), labels.to(device)
outputs, _ = model(data, 0)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the test images: %d %%' % (100 * correct / total))
if __name__ == '__main__':
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
transform = transforms.Compose([
transforms.Resize((28, 28)),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
source_dataset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
target_dataset = torchvision.datasets.USPS(root='./data', train=True, download=True, transform=transform)
source_data = source_dataset.data.unsqueeze(1).float()
source_labels = source_dataset.targets
target_data = target_dataset.data.unsqueeze(1).float()
target_labels = target_dataset.targets
source_loader = DataLoader(CustomDataset(source_data, source_labels), batch_size=64, shuffle=True)
target_loader = DataLoader(CustomDataset(target_data, target_labels), batch_size=64, shuffle=True)
dataloader = {'source': source_loader, 'target': target_loader}
model = DANN().to(device)
train(model, dataloader)
test(model, dataloader)
```
在这个示例中,我们使用了MNIST和USPS两个数据集作为源域和目标域,分别包含0~9十个数字的手写数字图像。我们使用了PyTorch中的MNIST和USPS数据集类来加载数据,并将图像转换成PyTorch需要的张量格式。同时,我们使用了PyTorch中的DataLoader类来构建数据迭代器,方便进行批量训练和测试。我们使用了交叉熵损失函数来计算分类和域分类的损失,并使用随机梯度下降(SGD)优化器来更新模型参数。在每个epoch开始时,我们从源域数据集中随机选择一批数据,从目标域数据集中选择一批数据,并将其送入模型进行训练。我们使用了Reverse Gradient Layer来实现域适应学习,将特征提取器的梯度反转,从而使得域分类器无法区分源域和目标域之间的特征。在测试阶段,我们将目标域数据集送入训练好的模型中,计算分类准确率。
阅读全文