python 交叉验证详细解说

时间: 2024-05-18 19:08:59 浏览: 96
交叉验证是一种常用的模型评估方法,它可以帮助我们更好地评估模型的性能,同时避免了过拟合等问题。在Python中,sklearn库提供了非常方便的交叉验证功能。 1.K折交叉验证:将数据集分成k份,依次将每份作为验证集,其余的k-1份作为训练集,进行模型训练和评估,最终得到k个模型的评估指标,一般取平均值作为模型最终的评估指标。 以下是一个使用sklearn库中KFold函数实现的5折交叉验证的例子: ```python from sklearn.model_selection import KFold kf = KFold(n_splits=5, shuffle=True, random_state=0) # 定义5折交叉验证实例 for train_index, val_index in kf.split(X): X_train, X_val = X[train_index], X[val_index] # 划分训练集和验证集 y_train, y_val = y[train_index], y[val_index] # 模型训练和评估 model = train_model(X_train, y_train) score = evaluate_model(model, X_val, y_val) print('模型评估指标:', score) ``` 2.重复K折交叉验证:重复进行K折交叉验证,可提高模型评估的可靠性,一般重复3-5次。 以下是一个使用sklearn库中Repeater和KFold函数实现的重复5折交叉验证的例子: ```python from sklearn.model_selection import RepeatedKFold rkf = RepeatedKFold(n_splits=5, n_repeats=3, random_state=0) # 定义重复5折交叉验证实例 for train_index, val_index in rkf.split(X): X_train, X_val = X[train_index], X[val_index] # 划分训练集和验证集 y_train, y_val = y[train_index], y[val_index] # 模型训练和评估 model = train_model(X_train, y_train) score = evaluate_model(model, X_val, y_val) print('模型评估指标:', score) ``` 引用: 4.3划分训练集与验证集 #划分训练集和验证集 from sklearn.model_selection import train_test_split X_train,X_val,y_train,y_val=train_test_split(X,y,test_size=0.2,random_state=0) [^1]。引用: 不同模型的效果均值对比 plt.subplots(1,4,figsize=(16,3)) for i,col in enumerate(lgb_crosseval.columns): n=int(str('14')+str(i+1)) plt.subplot(n) plt.plot(lgb_crosseval[col], 'k', label='LGB') plt.plot(xgb_crosseval[col], 'b-.', label='XGB') plt.plot(rf_crosseval[col], 'r-^', label='RF') plt.title(f'不同模型的{col}对比') plt.xlabel('重复交叉验证次数') plt.ylabel(col,fontsize=16) plt.legend() plt.tight_layout() plt.show() 。
阅读全文

相关推荐

最新推荐

recommend-type

详解python实现交叉验证法与留出法

本文主要探讨了两种常见的数据划分方法:留出法和交叉验证法,以及它们在Python中的实现。这两种方法都是为了平衡模型训练与测试的需求,确保模型的泛化能力。 首先,留出法是最直观的数据划分方法。它将整个数据集...
recommend-type

Python实现K折交叉验证法的方法步骤

在Python中,`sklearn.model_selection`库提供了实现K折交叉验证的工具,主要通过`KFold`类来完成。以下是一个简单的2折交叉验证的例子: ```python from sklearn.model_selection import KFold import numpy as np...
recommend-type

Python sklearn KFold 生成交叉验证数据集的方法

本文将详细介绍如何使用 sklearn 的 KFold 类生成交叉验证数据集,并探讨一些在实际操作中可能遇到的问题。 首先,让我们了解 KFold 的基本原理。KFold 将原始数据集划分为 k 个不重叠的部分,称为“折”。在 k 次...
recommend-type

sklearn和keras的数据切分与交叉验证的实例详解

在机器学习和深度学习中,数据切分与交叉验证是重要的步骤,用于评估模型的泛化能力。在本文中,我们将深入探讨如何在sklearn和Keras库中实现这一过程。 首先,我们要理解数据切分的基本概念。在训练模型时,通常会...
recommend-type

Python3安装Pymongo详细步骤

**Python3安装Pymongo详细步骤** Pymongo是Python编程语言中用于连接和操作MongoDB数据库的一个强大库。MongoDB是一种流行的NoSQL数据库,它提供了高性能、高可用性和易于扩展性的特性。Pymongo使得Python开发者...
recommend-type

Java毕业设计项目:校园二手交易网站开发指南

资源摘要信息:"Java是一种高性能、跨平台的面向对象编程语言,由Sun Microsystems(现为Oracle Corporation)的James Gosling等人在1995年推出。其设计理念是为了实现简单性、健壮性、可移植性、多线程以及动态性。Java的核心优势包括其跨平台特性,即“一次编写,到处运行”(Write Once, Run Anywhere),这得益于Java虚拟机(JVM)的存在,它提供了一个中介,使得Java程序能够在任何安装了相应JVM的设备上运行,无论操作系统如何。 Java是一种面向对象的编程语言,这意味着它支持面向对象编程(OOP)的三大特性:封装、继承和多态。封装使得代码模块化,提高了安全性;继承允许代码复用,简化了代码的复杂性;多态则增强了代码的灵活性和扩展性。 Java还具有内置的多线程支持能力,允许程序同时处理多个任务,这对于构建服务器端应用程序、网络应用程序等需要高并发处理能力的应用程序尤为重要。 自动内存管理,特别是垃圾回收机制,是Java的另一大特性。它自动回收不再使用的对象所占用的内存资源,这样程序员就无需手动管理内存,从而减轻了编程的负担,并减少了因内存泄漏而导致的错误和性能问题。 Java广泛应用于企业级应用开发、移动应用开发(尤其是Android平台)、大型系统开发等领域,并且有大量的开源库和框架支持,例如Spring、Hibernate、Struts等,这些都极大地提高了Java开发的效率和质量。 标签中提到的Java、毕业设计、课程设计和开发,意味着文件“毕业设计---社区(校园)二手交易网站.zip”中的内容可能涉及到Java语言的编程实践,可能是针对学生的课程设计或毕业设计项目,而开发则指出了这些内容的具体活动。 在文件名称列表中,“SJT-code”可能是指该压缩包中包含的是一个特定的项目代码,即社区(校园)二手交易网站的源代码。这类网站通常需要实现用户注册、登录、商品发布、浏览、交易、评价等功能,并且需要后端服务器支持,如数据库连接和事务处理等。考虑到Java的特性,网站的开发可能使用了Java Web技术栈,如Servlet、JSP、Spring Boot等,以及数据库技术,如MySQL或MongoDB等。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MVC标准化:肌电信号处理的终极指南】:提升数据质量的10大关键步骤与工具

![MVC标准化](https://img-blog.csdn.net/20160221141956498) # 摘要 MVC标准化是肌电信号处理中确保数据质量的重要步骤,它对于提高测量结果的准确性和可重复性至关重要。本文首先介绍肌电信号的生理学原理和MVC标准化理论,阐述了数据质量的重要性及影响因素。随后,文章深入探讨了肌电信号预处理的各个环节,包括噪声识别与消除、信号放大与滤波技术、以及基线漂移的校正方法。在提升数据质量的关键步骤部分,本文详细描述了信号特征提取、MVC标准化的实施与评估,并讨论了数据质量评估与优化工具。最后,本文通过实验设计和案例分析,展示了MVC标准化在实践应用中的具
recommend-type

能否提供一个在R语言中执行Framingham数据集判别分析的详细和完整的代码示例?

当然可以。在R语言中,Framingham数据集是一个用于心血管疾病研究的经典数据集。以下是使用`ggfortify`包结合` factoextra`包进行判别分析的一个基本步骤: 首先,你需要安装所需的库,如果尚未安装,可以使用以下命令: ```r install.packages(c("ggfortify", "factoextra")) ``` 然后加载所需的数据集并做预处理。Framingham数据集通常存储在`MASS`包中,你可以通过下面的代码加载: ```r library(MASS) data(Framingham) ``` 接下来,我们假设你已经对数据进行了适当的清洗和转换
recommend-type

Blaseball Plus插件开发与构建教程

资源摘要信息:"Blaseball Plus" Blaseball Plus是一个与游戏Blaseball相关的扩展项目,该项目提供了一系列扩展和改进功能,以增强Blaseball游戏体验。在这个项目中,JavaScript被用作主要开发语言,通过在package.json文件中定义的脚本来完成构建任务。项目说明中提到了开发环境的要求,即在20.09版本上进行开发,并且提供了一个flake.nix文件来复制确切的构建环境。虽然Nix薄片是一项处于工作状态(WIP)的功能且尚未完全记录,但可能需要用户自行安装系统依赖项,其中列出了Node.js和纱(Yarn)的特定版本。 ### 知识点详细说明: #### 1. Blaseball游戏: Blaseball是一个虚构的棒球游戏,它在互联网社区中流行,其特点是独特的规则、随机事件和社区参与的元素。 #### 2. 扩展开发: Blaseball Plus是一个扩展,它可能是为在浏览器中运行的Blaseball游戏提供额外功能和改进的软件。扩展开发通常涉及编写额外的代码来增强现有软件的功能。 #### 3. JavaScript编程语言: JavaScript是一种高级的、解释执行的编程语言,被广泛用于网页和Web应用的客户端脚本编写,是开发Web扩展的关键技术之一。 #### 4. package.json文件: 这是Node.js项目的核心配置文件,用于声明项目的各种配置选项,包括项目名称、版本、依赖关系以及脚本命令等。 #### 5.构建脚本: 描述中提到的脚本,如`build:dev`、`build:prod:unsigned`和`build:prod:signed`,这些脚本用于自动化构建过程,可能包括编译、打包、签名等步骤。`yarn run`命令用于执行这些脚本。 #### 6. yarn包管理器: Yarn是一个快速、可靠和安全的依赖项管理工具,类似于npm(Node.js的包管理器)。它允许开发者和项目管理依赖项,通过简单的命令行界面可以轻松地安装和更新包。 #### 7. Node.js版本管理: 项目要求Node.js的具体版本,这里是14.9.0版本。管理特定的Node.js版本是重要的,因为在不同版本间可能会存在API变化或其他不兼容问题,这可能会影响扩展的构建和运行。 #### 8. 系统依赖项的安装: 文档提到可能需要用户手动安装系统依赖项,这在使用Nix薄片时尤其常见。Nix薄片(Nix flakes)是一个实验性的Nix特性,用于提供可复现的开发环境和构建设置。 #### 9. Web扩展的工件放置: 构建后的工件放置在`addon/web-ext-artifacts/`目录中,表明这可能是一个基于WebExtension的扩展项目。WebExtension是一种跨浏览器的扩展API,用于创建浏览器扩展。 #### 10. 扩展部署: 描述中提到了两种不同类型的构建版本:开发版(dev)和生产版(prod),其中生产版又分为未签名(unsigned)和已签名(signed)版本。这些不同的构建版本用于不同阶段的开发和发布。 通过这份文档,我们能够了解到Blaseball Plus项目的开发环境配置、构建脚本的使用、依赖管理工具的运用以及Web扩展的基本概念和部署流程。这些知识点对于理解JavaScript项目开发和扩展构建具有重要意义。