FUNANNOTATE_DB环境变量未设置:你需要将/path/to/dir路径替换为你实际基因注释数据库文件的目录,并将其赋值给这个环境变量。 如何进行配置
时间: 2024-10-29 14:16:13 浏览: 15
要配置`FUNANNOTATE_DB`环境变量,你需要做以下几个步骤:
1. 确定你的基因注释数据库存储位置:这通常是包含基因注释信息(如转录组、蛋白质等)的文件夹。例如,如果你的数据库位于`D:\my_annotations`目录下,那么路径就是`D:\my_annotations`。
2. 打开终端或命令提示符(取决于你的操作系统)。在Windows上,你可以通过搜索"命令提示符"或"PowerShell"打开。
3. 输入以下命令来设置环境变量,将`/path/to/dir`替换为你的实际路径:
- 对于Windows PowerShell或Git Bash:
```
$env:FUNANNOTATE_DB="D:\my_annotations"
```
- 对于Unix/Linux或Mac OS的终端:
```
export FUNANNOTATE_DB="/path/to/dir"
```
4. 确认设置生效:输入`echo %FUNANNOTATE_DB%`(Windows)或`echo $FUNANNOTATE_DB`(Unix/Linux),应该看到你刚刚设置的路径。
现在`FUNANNOTATE_DB`环境变量已经设置好了,funannotate应该能识别到你的基因注释数据。如果还是有问题,确保数据库文件的权限设置允许读取操作。
相关问题
详细解释一下这段代码,每一句都要进行注解:for dataset in datasets: print(dataset) if dataset not in out_results: out_results[dataset] = {} for scene in data_dict[dataset]: print(scene) # Fail gently if the notebook has not been submitted and the test data is not populated. # You may want to run this on the training data in that case? img_dir = f'{src}/test/{dataset}/{scene}/images' if not os.path.exists(img_dir): continue # Wrap the meaty part in a try-except block. try: out_results[dataset][scene] = {} img_fnames = [f'{src}/test/{x}' for x in data_dict[dataset][scene]] print (f"Got {len(img_fnames)} images") feature_dir = f'featureout/{dataset}{scene}' if not os.path.isdir(feature_dir): os.makedirs(feature_dir, exist_ok=True) t=time() index_pairs = get_image_pairs_shortlist(img_fnames, sim_th = 0.5644583, # should be strict min_pairs = 33, # we select at least min_pairs PER IMAGE with biggest similarity exhaustive_if_less = 20, device=device) t=time() -t timings['shortlisting'].append(t) print (f'{len(index_pairs)}, pairs to match, {t:.4f} sec') gc.collect() t=time() if LOCAL_FEATURE != 'LoFTR': detect_features(img_fnames, 2048, feature_dir=feature_dir, upright=True, device=device, resize_small_edge_to=600 ) gc.collect() t=time() -t timings['feature_detection'].append(t) print(f'Features detected in {t:.4f} sec') t=time() match_features(img_fnames, index_pairs, feature_dir=feature_dir,device=device) else: match_loftr(img_fnames, index_pairs, feature_dir=feature_dir, device=device, resize_to=(600, 800)) t=time() -t timings['feature_matching'].append(t) print(f'Features matched in {t:.4f} sec') database_path = f'{feature_dir}/colmap.db' if os.path.isfile(database_path): os.remove(database_path) gc.collect() import_into_colmap(img_dir, feature_dir=feature_dir,database_path=database_path) output_path = f'{feature_dir}/colmap_rec_{LOCAL_FEATURE}' t=time() pycolmap.match_exhaustive(database_path) t=time() - t timings['RANSAC'].append(t) print(f'RANSAC in {t:.4f} sec')
这段代码是Python代码,用于图像匹配和三维重建。以下是每行代码的注释:
```python
for dataset in datasets: # 遍历数据集列表
print(dataset) # 输出当前数据集
if dataset not in out_results: # 如果当前数据集不在输出结果中
out_results[dataset] = {} # 添加一个空字典作为该数据集的输出结果
for scene in data_dict[dataset]: # 遍历当前数据集中的场景
print(scene) # 输出当前场景
# 如果在测试集中,但该场景的图像数据未被提供,则跳过
img_dir = f'{src}/test/{dataset}/{scene}/images'
if not os.path.exists(img_dir):
continue
try: # 尝试匹配图像并执行三维重建
out_results[dataset][scene] = {} # 添加一个空字典作为该场景的输出结果
img_fnames = [f'{src}/test/{x}' for x in data_dict[dataset][scene]] # 获取当前场景中的图像文件名列表
print(f"Got {len(img_fnames)} images")
feature_dir = f'featureout/{dataset}{scene}' # 设置特征输出目录
if not os.path.isdir(feature_dir): # 如果特征输出目录不存在,则创建该目录
os.makedirs(feature_dir, exist_ok=True)
t = time()
# 获取图像对的候选列表
index_pairs = get_image_pairs_shortlist(img_fnames, sim_th=0.5644583, min_pairs=33,
exhaustive_if_less=20, device=device)
t = time() - t
timings['shortlisting'].append(t)
print(f'{len(index_pairs)}, pairs to match, {t:.4f} sec')
gc.collect() # 执行垃圾回收以释放内存
t = time()
# 如果不使用LoFTR,则检测图像中的特征点
if LOCAL_FEATURE != 'LoFTR':
detect_features(img_fnames, 2048, feature_dir=feature_dir, upright=True,
device=device, resize_small_edge_to=600)
gc.collect()
t = time() - t
timings['feature_detection'].append(t)
print(f'Features detected in {t:.4f} sec')
# 匹配图像中的特征点
match_features(img_fnames, index_pairs, feature_dir=feature_dir, device=device)
# 如果使用LoFTR,则使用LoFTR进行特征匹配
else:
match_loftr(img_fnames, index_pairs, feature_dir=feature_dir, device=device,
resize_to=(600, 800))
t = time() - t
timings['feature_matching'].append(t)
print(f'Features matched in {t:.4f} sec')
database_path = f'{feature_dir}/colmap.db'
if os.path.isfile(database_path):
os.remove(database_path)
gc.collect()
# 将特征匹配结果导入到COLMAP数据库中
import_into_colmap(img_dir, feature_dir=feature_dir, database_path=database_path)
output_path = f'{feature_dir}/colmap_rec_{LOCAL_FEATURE}'
t = time()
# 使用COLMAP执行RANSAC算法进行三维重建
pycolmap.match_exhaustive(database_path)
t = time() - t
timings['RANSAC'].append(t)
print(f'RANSAC in {t:.4f} sec')
except Exception as e: # 捕获任何异常
print(f'Scene {scene} failed. Error: {e}')
```
此代码的主要目的是使用图像匹配和三维重建技术来重建场景。在此过程中,它使用了许多库和函数,例如os、time、gc、pycolmap等。
阅读全文