--------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) Cell In[58], line 11 9 y3 = y1 + y2 10 # 计算y3对x的梯度 ---> 11 y3.backward() 12 print(x.grad) File E:\anaconda\envs\pytorch\lib\site-packages\torch\_tensor.py:487, in Tensor.backward(self, gradient, retain_graph, create_graph, inputs) 477 if has_torch_function_unary(self): 478 return handle_torch_function( 479 Tensor.backward, 480 (self,), (...) 485 inputs=inputs, 486 ) --> 487 torch.autograd.backward( 488 self, gradient, retain_graph, create_graph, inputs=inputs 489 ) File E:\anaconda\envs\pytorch\lib\site-packages\torch\autograd\__init__.py:200, in backward(tensors, grad_tensors, retain_graph, create_graph, grad_variables, inputs) 195 retain_graph = create_graph 197 # The reason we repeat same the comment below is that 198 # some Python versions print out the first line of a multi-line function 199 # calls in the traceback and some print out the last line --> 200 Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass 201 tensors, grad_tensors_, retain_graph, create_graph, inputs, 202 allow_unreachable=True, accumulate_grad=True) RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn
时间: 2024-04-15 18:25:20 浏览: 176
这个错误是因为在进行反向传播(backward)时,计算图中的某些张量没有被设置为需要梯度计算。在PyTorch中,默认情况下,张量是不需要梯度的,除非通过设置`requires_grad=True`来显式指定。
根据你提供的代码,可以看到报错发生在`y1`和`y2`的计算中,因此我们需要确保`x`、`w1`、`w2`都设置了`requires_grad=True`,以便能够计算它们的梯度。可以在定义这些张量时添加`requires_grad=True`参数。
以下是修正后的代码:
```python
import torch
# 定义x,w1,w2,并设置requires_grad=True
x = torch.tensor([[1.0, 2.0], [3.0, 4.0]], requires_grad=True)
w1 = torch.tensor([[0.1, 0.2], [0.3, 0.4]], requires_grad=True)
w2 = torch.tensor([[0.5], [0.6]], requires_grad=True)
# 计算y1和y2
y1 = torch.matmul(x, w1)
y2 = torch.matmul(y1, w2)
# 计算y3并进行反向传播
y3 = y1 + y2
y3.backward()
# 打印x的梯度
print(x.grad)
```
通过将`requires_grad=True`添加到`x`、`w1`和`w2`的定义中,可以确保这些张量需要计算梯度。然后,可以进行正向传播和反向传播,并打印出`x`的梯度。
阅读全文