用Python实现LASSO回归应用
时间: 2024-10-23 17:17:57 浏览: 30
在Python中,我们可以使用统计学习库如Scikit-Learn来实现LASSO(Least Absolute Shrinkage and Selection Operator,弹性网络回归)算法。LASSO是一种线性模型,它通过加入L1正则化项,使得一些系数变为0,从而实现特征选择。
以下是使用scikit-learn库简单实现LASSO回归的步骤:
1. 首先,你需要安装必要的库,如果你还没有安装,可以运行:
```bash
pip install numpy pandas scikit-learn
```
2. 导入所需的库:
```python
import numpy as np
from sklearn.linear_model import Lasso
from sklearn.model_selection import train_test_split
import pandas as pd
```
3. 加载数据集(这里假设你已经有了一个名为df的pandas DataFrame,包含特征和目标变量):
```python
X = df.drop('target_column', axis=1) # 特征
y = df['target_column'] # 目标变量
```
4. 划分训练集和测试集:
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
5. 创建并训练LASSO模型:
```python
lasso = Lasso(alpha=0.1) # alpha参数控制正则化的强度,越小越倾向于特征选择
lasso.fit(X_train, y_train)
```
6. 预测和评估模型性能:
```python
predictions = lasso.predict(X_test)
```
7. 可视化重要特征或查看系数(如果alpha较小,有些系数可能接近于0,表示对应的特征几乎没被选中):
```python
non_zero_features = [feature for feature in X.columns if abs(lasso.coef_[feature]) > 1e-5]
print(f"Non-zero features: {non_zero_features}")
```
阅读全文