python决策树算法代码不用sklearn
时间: 2024-08-01 16:00:43 浏览: 55
Python决策树算法sklearn代码 DecisionTreeClassifier示例
5星 · 资源好评率100%
Python中除了使用scikit-learn库来创建决策树外,还可以使用其他第三方库如`DecisionTreeClassifier`模块来自`pydotplus`和`graphviz`。以下是一个简单的示例,展示如何手动实现ID3算法创建决策树:
```python
import numpy as np
from collections import Counter
class DecisionNode:
def __init__(self, feature=None, value=None, left=None, right=None, decision_type=None):
self.feature = feature
self.value = value
self.left = left
self.right = right
self.decision_type = decision_type
class ID3DecissionTree:
def __init__(self, features, target):
self.root = self._grow_tree(features, target)
def _entropy(self, counts):
N = sum(counts.values())
return -sum(count * np.log2(count / N) for count in counts.values())
def _information_gain(self, parent_counts, child_counts):
parent_entropy = self._entropy(parent_counts)
weighted_child_entropy = sum(child_count / total * self._entropy(child_counts[child_key])
for child_key, child_count in child_counts.items() for total in parent_counts.values())
return parent_entropy - weighted_child_entropy
def _grow_tree(self, remaining_features, labels):
# 基本情况: 如果所有标签相同或只剩下一个特征,则返回叶节点
if len(np.unique(labels)) == 1 or len(remaining_features) == 0:
return DecisionNode(decision_type='leaf', value=np.argmax(Counter(labels).values()))
best_feature = None
max_information_gain = float('-inf')
# 遍历剩余特征
for feature_name, unique_values in remaining_features.items():
for value in unique_values:
# 划分数据集
true_set, false_set = self._split_data(labels, feature_name, value)
# 计算信息增益
ig = self._information_gain(Counter(labels), {True: len(true_set), False: len(false_set)})
if ig > max_information_gain:
max_information_gain = ig
best_feature = (feature_name, value)
if best_feature is not None:
feature_name, value = best_feature
remaining_features.pop(feature_name)
# 构建决策节点并递归生长左右子树
decision_node = DecisionNode(feature=feature_name, value=value,
left=self._grow_tree(remaining_features, true_set),
right=self._grow_tree(remaining_features, false_set))
return decision_node
else:
# 如果找不到好特征,返回叶节点(假设随机猜测)
return DecisionNode(decision_type='leaf', value=np.random.choice(list(set(labels))))
@staticmethod
def _split_data(labels, feature_name, value):
true_labels = [label for label in labels if getattr(data[feature_name], 'lower')() == value.lower()]
false_labels = [label for label in labels if getattr(data[feature_name], 'lower')() != value.lower()]
return true_labels, false_labels
# 使用示例
features = [{'color': 'red'}, {'color': 'green'}, {'color': 'blue'}, {'color': 'red'}]
labels = ['apple', 'banana', 'orange', 'apple']
tree = ID3DecissionTree(features, labels)
```
在这个例子中,我们手动实现了ID3算法的基本流程,包括计算熵、信息增益以及数据划分。你可以根据需要调整这个基础框架来适应更复杂的需求。
阅读全文