机器人小车双目视觉测距python代码
时间: 2024-06-11 07:03:15 浏览: 197
双目视觉测距是利用机器人小车上安装的两个摄像头(通常称为左相机和右相机)来计算距离的一种方法,通过测量两个视差图像中对应点之间的距离来估计目标的距离。在Python中,可以使用OpenCV(Open Source Computer Vision Library)这样的库来处理图像,并结合深度学习或者基于特征的方法来实现。以下是一个简化版的双目视觉测距Python代码示例:
```python
import cv2
import numpy as np
# 假设左右相机的图像已经读取并存储在left_image和right_image变量中
left_image = ...
right_image = ...
# 初始化相机参数(假设是棋盘格标定)
# 这部分需要根据实际情况调整
camera_matrix_left, distortion_coeffs_left = ...
camera_matrix_right, distortion_coeffs_right = ...
# 预处理步骤(如灰度化、去除噪声、校正畸变等)
gray_left = cv2.cvtColor(left_image, cv2.COLOR_BGR2GRAY)
gray_right = cv2.cvtColor(right_image, cv2.COLOR_BGR2GRAY)
# 检测特征点(例如SIFT或ORB)
sift_left = cv2.xfeatures2d.SIFT_create()
sift_right = cv2.xfeatures2d.SIFT_create()
keypoints_left, descriptors_left = sift_left.detectAndCompute(gray_left, None)
keypoints_right, descriptors_right = sift_right.detectAndCompute(gray_right, None)
# 计算匹配
matcher = cv2.BFMatcher()
matches = matcher.knnMatch(descriptors_left, descriptors_right, k=2)
# 匹配筛选(通常保留高质量匹配)
good_matches = []
for m, n in matches:
if m.distance < 0.75 * n.distance:
good_matches.append(m)
# 根据匹配计算单视场的坐标,然后进行基本立体匹配
stereo_match = cv2.drawMatchesKnn(
gray_left, keypoints_left, gray_right, keypoints_right, good_matches, None,
flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS
)
# 使用双视图立体算法(如SGBM或StereoBM)计算深度图
stereo = cv2.StereoBM_create(numDisparities=16, blockSize=15)
disparity = stereo.compute(gray_left, gray_right)
# 将像素坐标转换为实际距离(假设相机分辨率和焦距已知)
disparity_map = cv2.normalize(disparity, None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8UC1)
distance = disparity_map / camera_matrix_left[0]
# 最后处理结果(可能需要裁剪、插值等)
distance_image = cv2.convertScaleAbs(distance)
# 显示或保存结果
cv2.imshow("Distance Map", distance_image)
cv2.waitKey(0)
阅读全文